// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "common/math_util.h" #include "core/hid/motion_input.h" namespace Core::HID { MotionInput::MotionInput() { // Initialize PID constants with default values SetPID(0.3f, 0.005f, 0.0f); SetGyroThreshold(0.007f); } void MotionInput::SetPID(f32 new_kp, f32 new_ki, f32 new_kd) { kp = new_kp; ki = new_ki; kd = new_kd; } void MotionInput::SetAcceleration(const Common::Vec3f& acceleration) { accel = acceleration; } void MotionInput::SetGyroscope(const Common::Vec3f& gyroscope) { gyro = gyroscope - gyro_bias; // Auto adjust drift to minimize drift if (!IsMoving(0.1f)) { gyro_bias = (gyro_bias * 0.9999f) + (gyroscope * 0.0001f); } if (gyro.Length() < gyro_threshold) { gyro = {}; } else { only_accelerometer = false; } } void MotionInput::SetQuaternion(const Common::Quaternion& quaternion) { quat = quaternion; } void MotionInput::SetGyroBias(const Common::Vec3f& bias) { gyro_bias = bias; } void MotionInput::SetGyroThreshold(f32 threshold) { gyro_threshold = threshold; } void MotionInput::EnableReset(bool reset) { reset_enabled = reset; } void MotionInput::ResetRotations() { rotations = {}; } bool MotionInput::IsMoving(f32 sensitivity) const { return gyro.Length() >= sensitivity || accel.Length() <= 0.9f || accel.Length() >= 1.1f; } bool MotionInput::IsCalibrated(f32 sensitivity) const { return real_error.Length() < sensitivity; } void MotionInput::UpdateRotation(u64 elapsed_time) { const auto sample_period = static_cast(elapsed_time) / 1000000.0f; if (sample_period > 0.1f) { return; } rotations += gyro * sample_period; } // Based on Madgwick's implementation of Mayhony's AHRS algorithm. // https://github.com/xioTechnologies/Open-Source-AHRS-With-x-IMU/blob/master/x-IMU%20IMU%20and%20AHRS%20Algorithms/x-IMU%20IMU%20and%20AHRS%20Algorithms/AHRS/MahonyAHRS.cs void MotionInput::UpdateOrientation(u64 elapsed_time) { if (!IsCalibrated(0.1f)) { ResetOrientation(); } // Short name local variable for readability f32 q1 = quat.w; f32 q2 = quat.xyz[0]; f32 q3 = quat.xyz[1]; f32 q4 = quat.xyz[2]; const auto sample_period = static_cast(elapsed_time) / 1000000.0f; // Ignore invalid elapsed time if (sample_period > 0.1f) { return; } const auto normal_accel = accel.Normalized(); auto rad_gyro = gyro * Common::PI * 2; const f32 swap = rad_gyro.x; rad_gyro.x = rad_gyro.y; rad_gyro.y = -swap; rad_gyro.z = -rad_gyro.z; // Clear gyro values if there is no gyro present if (only_accelerometer) { rad_gyro.x = 0; rad_gyro.y = 0; rad_gyro.z = 0; } // Ignore drift correction if acceleration is not reliable if (accel.Length() >= 0.75f && accel.Length() <= 1.25f) { const f32 ax = -normal_accel.x; const f32 ay = normal_accel.y; const f32 az = -normal_accel.z; // Estimated direction of gravity const f32 vx = 2.0f * (q2 * q4 - q1 * q3); const f32 vy = 2.0f * (q1 * q2 + q3 * q4); const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4; // Error is cross product between estimated direction and measured direction of gravity const Common::Vec3f new_real_error = { az * vx - ax * vz, ay * vz - az * vy, ax * vy - ay * vx, }; derivative_error = new_real_error - real_error; real_error = new_real_error; // Prevent integral windup if (ki != 0.0f && !IsCalibrated(0.05f)) { integral_error += real_error; } else { integral_error = {}; } // Apply feedback terms if (!only_accelerometer) { rad_gyro += kp * real_error; rad_gyro += ki * integral_error; rad_gyro += kd * derivative_error; } else { // Give more weight to accelerometer values to compensate for the lack of gyro rad_gyro += 35.0f * kp * real_error; rad_gyro += 10.0f * ki * integral_error; rad_gyro += 10.0f * kd * derivative_error; // Emulate gyro values for games that need them gyro.x = -rad_gyro.y; gyro.y = rad_gyro.x; gyro.z = -rad_gyro.z; UpdateRotation(elapsed_time); } } const f32 gx = rad_gyro.y; const f32 gy = rad_gyro.x; const f32 gz = rad_gyro.z; // Integrate rate of change of quaternion const f32 pa = q2; const f32 pb = q3; const f32 pc = q4; q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period); q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period); q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period); q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period); quat.w = q1; quat.xyz[0] = q2; quat.xyz[1] = q3; quat.xyz[2] = q4; quat = quat.Normalized(); } std::array MotionInput::GetOrientation() const { const Common::Quaternion quad{ .xyz = {-quat.xyz[1], -quat.xyz[0], -quat.w}, .w = -quat.xyz[2], }; const std::array matrix4x4 = quad.ToMatrix(); return {Common::Vec3f(matrix4x4[0], matrix4x4[1], -matrix4x4[2]), Common::Vec3f(matrix4x4[4], matrix4x4[5], -matrix4x4[6]), Common::Vec3f(-matrix4x4[8], -matrix4x4[9], matrix4x4[10])}; } Common::Vec3f MotionInput::GetAcceleration() const { return accel; } Common::Vec3f MotionInput::GetGyroscope() const { return gyro; } Common::Vec3f MotionInput::GetGyroBias() const { return gyro_bias; } Common::Quaternion MotionInput::GetQuaternion() const { return quat; } Common::Vec3f MotionInput::GetRotations() const { return rotations; } void MotionInput::ResetOrientation() { if (!reset_enabled || only_accelerometer) { return; } if (!IsMoving(0.5f) && accel.z <= -0.9f) { ++reset_counter; if (reset_counter > 900) { quat.w = 0; quat.xyz[0] = 0; quat.xyz[1] = 0; quat.xyz[2] = -1; SetOrientationFromAccelerometer(); integral_error = {}; reset_counter = 0; } } else { reset_counter = 0; } } void MotionInput::SetOrientationFromAccelerometer() { int iterations = 0; const f32 sample_period = 0.015f; const auto normal_accel = accel.Normalized(); while (!IsCalibrated(0.01f) && ++iterations < 100) { // Short name local variable for readability f32 q1 = quat.w; f32 q2 = quat.xyz[0]; f32 q3 = quat.xyz[1]; f32 q4 = quat.xyz[2]; Common::Vec3f rad_gyro; const f32 ax = -normal_accel.x; const f32 ay = normal_accel.y; const f32 az = -normal_accel.z; // Estimated direction of gravity const f32 vx = 2.0f * (q2 * q4 - q1 * q3); const f32 vy = 2.0f * (q1 * q2 + q3 * q4); const f32 vz = q1 * q1 - q2 * q2 - q3 * q3 + q4 * q4; // Error is cross product between estimated direction and measured direction of gravity const Common::Vec3f new_real_error = { az * vx - ax * vz, ay * vz - az * vy, ax * vy - ay * vx, }; derivative_error = new_real_error - real_error; real_error = new_real_error; rad_gyro += 10.0f * kp * real_error; rad_gyro += 5.0f * ki * integral_error; rad_gyro += 10.0f * kd * derivative_error; const f32 gx = rad_gyro.y; const f32 gy = rad_gyro.x; const f32 gz = rad_gyro.z; // Integrate rate of change of quaternion const f32 pa = q2; const f32 pb = q3; const f32 pc = q4; q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * sample_period); q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * sample_period); q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * sample_period); q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * sample_period); quat.w = q1; quat.xyz[0] = q2; quat.xyz[1] = q3; quat.xyz[2] = q4; quat = quat.Normalized(); } } } // namespace Core::HID