// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include "common/fiber.h" #include "common/microprofile.h" #include "common/scope_exit.h" #include "common/thread.h" #include "core/core.h" #include "core/core_timing.h" #include "core/cpu_manager.h" #include "core/hle/kernel/k_scheduler.h" #include "core/hle/kernel/k_thread.h" #include "core/hle/kernel/kernel.h" #include "core/hle/kernel/physical_core.h" #include "video_core/gpu.h" namespace Core { CpuManager::CpuManager(System& system_) : system{system_} {} CpuManager::~CpuManager() = default; void CpuManager::ThreadStart(std::stop_token stop_token, CpuManager& cpu_manager, std::size_t core) { cpu_manager.RunThread(stop_token, core); } void CpuManager::Initialize() { running_mode = true; if (is_multicore) { for (std::size_t core = 0; core < Core::Hardware::NUM_CPU_CORES; core++) { core_data[core].host_thread = std::jthread(ThreadStart, std::ref(*this), core); } } else { core_data[0].host_thread = std::jthread(ThreadStart, std::ref(*this), 0); } } void CpuManager::Shutdown() { running_mode = false; Pause(false); } std::function CpuManager::GetGuestThreadStartFunc() { return GuestThreadFunction; } std::function CpuManager::GetIdleThreadStartFunc() { return IdleThreadFunction; } std::function CpuManager::GetSuspendThreadStartFunc() { return SuspendThreadFunction; } void CpuManager::GuestThreadFunction(void* cpu_manager_) { CpuManager* cpu_manager = static_cast(cpu_manager_); if (cpu_manager->is_multicore) { cpu_manager->MultiCoreRunGuestThread(); } else { cpu_manager->SingleCoreRunGuestThread(); } } void CpuManager::GuestRewindFunction(void* cpu_manager_) { CpuManager* cpu_manager = static_cast(cpu_manager_); if (cpu_manager->is_multicore) { cpu_manager->MultiCoreRunGuestLoop(); } else { cpu_manager->SingleCoreRunGuestLoop(); } } void CpuManager::IdleThreadFunction(void* cpu_manager_) { CpuManager* cpu_manager = static_cast(cpu_manager_); if (cpu_manager->is_multicore) { cpu_manager->MultiCoreRunIdleThread(); } else { cpu_manager->SingleCoreRunIdleThread(); } } void CpuManager::SuspendThreadFunction(void* cpu_manager_) { CpuManager* cpu_manager = static_cast(cpu_manager_); if (cpu_manager->is_multicore) { cpu_manager->MultiCoreRunSuspendThread(); } else { cpu_manager->SingleCoreRunSuspendThread(); } } void* CpuManager::GetStartFuncParamater() { return static_cast(this); } /////////////////////////////////////////////////////////////////////////////// /// MultiCore /// /////////////////////////////////////////////////////////////////////////////// void CpuManager::MultiCoreRunGuestThread() { auto& kernel = system.Kernel(); kernel.CurrentScheduler()->OnThreadStart(); auto* thread = kernel.CurrentScheduler()->GetCurrentThread(); auto& host_context = thread->GetHostContext(); host_context->SetRewindPoint(GuestRewindFunction, this); MultiCoreRunGuestLoop(); } void CpuManager::MultiCoreRunGuestLoop() { auto& kernel = system.Kernel(); while (true) { auto* physical_core = &kernel.CurrentPhysicalCore(); system.EnterDynarmicProfile(); while (!physical_core->IsInterrupted()) { physical_core->Run(); physical_core = &kernel.CurrentPhysicalCore(); } system.ExitDynarmicProfile(); { Kernel::KScopedDisableDispatch dd(kernel); physical_core->ArmInterface().ClearExclusiveState(); } } } void CpuManager::MultiCoreRunIdleThread() { auto& kernel = system.Kernel(); while (true) { Kernel::KScopedDisableDispatch dd(kernel); kernel.CurrentPhysicalCore().Idle(); } } void CpuManager::MultiCoreRunSuspendThread() { auto& kernel = system.Kernel(); kernel.CurrentScheduler()->OnThreadStart(); while (true) { auto core = kernel.CurrentPhysicalCoreIndex(); auto& scheduler = *kernel.CurrentScheduler(); Kernel::KThread* current_thread = scheduler.GetCurrentThread(); Common::Fiber::YieldTo(current_thread->GetHostContext(), *core_data[core].host_context); ASSERT(scheduler.ContextSwitchPending()); ASSERT(core == kernel.CurrentPhysicalCoreIndex()); scheduler.RescheduleCurrentCore(); } } void CpuManager::MultiCorePause(bool paused) { if (!paused) { bool all_not_barrier = false; while (!all_not_barrier) { all_not_barrier = true; for (const auto& data : core_data) { all_not_barrier &= !data.is_running.load() && data.initialized.load(); } } for (auto& data : core_data) { data.enter_barrier->Set(); } if (paused_state.load()) { bool all_barrier = false; while (!all_barrier) { all_barrier = true; for (const auto& data : core_data) { all_barrier &= data.is_paused.load() && data.initialized.load(); } } for (auto& data : core_data) { data.exit_barrier->Set(); } } } else { /// Wait until all cores are paused. bool all_barrier = false; while (!all_barrier) { all_barrier = true; for (const auto& data : core_data) { all_barrier &= data.is_paused.load() && data.initialized.load(); } } /// Don't release the barrier } paused_state = paused; } /////////////////////////////////////////////////////////////////////////////// /// SingleCore /// /////////////////////////////////////////////////////////////////////////////// void CpuManager::SingleCoreRunGuestThread() { auto& kernel = system.Kernel(); kernel.CurrentScheduler()->OnThreadStart(); auto* thread = kernel.CurrentScheduler()->GetCurrentThread(); auto& host_context = thread->GetHostContext(); host_context->SetRewindPoint(GuestRewindFunction, this); SingleCoreRunGuestLoop(); } void CpuManager::SingleCoreRunGuestLoop() { auto& kernel = system.Kernel(); while (true) { auto* physical_core = &kernel.CurrentPhysicalCore(); system.EnterDynarmicProfile(); if (!physical_core->IsInterrupted()) { physical_core->Run(); physical_core = &kernel.CurrentPhysicalCore(); } system.ExitDynarmicProfile(); kernel.SetIsPhantomModeForSingleCore(true); system.CoreTiming().Advance(); kernel.SetIsPhantomModeForSingleCore(false); physical_core->ArmInterface().ClearExclusiveState(); PreemptSingleCore(); auto& scheduler = kernel.Scheduler(current_core); scheduler.RescheduleCurrentCore(); } } void CpuManager::SingleCoreRunIdleThread() { auto& kernel = system.Kernel(); while (true) { auto& physical_core = kernel.CurrentPhysicalCore(); PreemptSingleCore(false); system.CoreTiming().AddTicks(1000U); idle_count++; auto& scheduler = physical_core.Scheduler(); scheduler.RescheduleCurrentCore(); } } void CpuManager::SingleCoreRunSuspendThread() { auto& kernel = system.Kernel(); kernel.CurrentScheduler()->OnThreadStart(); while (true) { auto core = kernel.GetCurrentHostThreadID(); auto& scheduler = *kernel.CurrentScheduler(); Kernel::KThread* current_thread = scheduler.GetCurrentThread(); Common::Fiber::YieldTo(current_thread->GetHostContext(), *core_data[0].host_context); ASSERT(scheduler.ContextSwitchPending()); ASSERT(core == kernel.GetCurrentHostThreadID()); scheduler.RescheduleCurrentCore(); } } void CpuManager::PreemptSingleCore(bool from_running_enviroment) { { auto& kernel = system.Kernel(); auto& scheduler = kernel.Scheduler(current_core); Kernel::KThread* current_thread = scheduler.GetCurrentThread(); if (idle_count >= 4 || from_running_enviroment) { if (!from_running_enviroment) { system.CoreTiming().Idle(); idle_count = 0; } kernel.SetIsPhantomModeForSingleCore(true); system.CoreTiming().Advance(); kernel.SetIsPhantomModeForSingleCore(false); } current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES); system.CoreTiming().ResetTicks(); scheduler.Unload(scheduler.GetCurrentThread()); auto& next_scheduler = kernel.Scheduler(current_core); Common::Fiber::YieldTo(current_thread->GetHostContext(), *next_scheduler.ControlContext()); } // May have changed scheduler { auto& scheduler = system.Kernel().Scheduler(current_core); scheduler.Reload(scheduler.GetCurrentThread()); if (!scheduler.IsIdle()) { idle_count = 0; } } } void CpuManager::SingleCorePause(bool paused) { if (!paused) { bool all_not_barrier = false; while (!all_not_barrier) { all_not_barrier = !core_data[0].is_running.load() && core_data[0].initialized.load(); } core_data[0].enter_barrier->Set(); if (paused_state.load()) { bool all_barrier = false; while (!all_barrier) { all_barrier = core_data[0].is_paused.load() && core_data[0].initialized.load(); } core_data[0].exit_barrier->Set(); } } else { /// Wait until all cores are paused. bool all_barrier = false; while (!all_barrier) { all_barrier = core_data[0].is_paused.load() && core_data[0].initialized.load(); } /// Don't release the barrier } paused_state = paused; } void CpuManager::Pause(bool paused) { if (is_multicore) { MultiCorePause(paused); } else { SingleCorePause(paused); } } void CpuManager::RunThread(std::stop_token stop_token, std::size_t core) { /// Initialization system.RegisterCoreThread(core); std::string name; if (is_multicore) { name = "yuzu:CPUCore_" + std::to_string(core); } else { name = "yuzu:CPUThread"; } MicroProfileOnThreadCreate(name.c_str()); Common::SetCurrentThreadName(name.c_str()); Common::SetCurrentThreadPriority(Common::ThreadPriority::High); auto& data = core_data[core]; data.enter_barrier = std::make_unique(); data.exit_barrier = std::make_unique(); data.host_context = Common::Fiber::ThreadToFiber(); data.is_running = false; data.initialized = true; const bool sc_sync = !is_async_gpu && !is_multicore; bool sc_sync_first_use = sc_sync; // Cleanup SCOPE_EXIT({ data.host_context->Exit(); data.enter_barrier.reset(); data.exit_barrier.reset(); data.initialized = false; MicroProfileOnThreadExit(); }); /// Running while (running_mode) { data.is_running = false; data.enter_barrier->Wait(); if (sc_sync_first_use) { system.GPU().ObtainContext(); sc_sync_first_use = false; } // Emulation was stopped if (stop_token.stop_requested()) { return; } auto current_thread = system.Kernel().CurrentScheduler()->GetCurrentThread(); data.is_running = true; Common::Fiber::YieldTo(data.host_context, *current_thread->GetHostContext()); data.is_running = false; data.is_paused = true; data.exit_barrier->Wait(); data.is_paused = false; } } } // namespace Core