// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "core/core_timing.h" #include #include #include #include #include "common/assert.h" #include "common/thread.h" #include "core/core_timing_util.h" namespace Core::Timing { constexpr int MAX_SLICE_LENGTH = 20000; struct CoreTiming::Event { s64 time; u64 fifo_order; u64 userdata; const EventType* type; // Sort by time, unless the times are the same, in which case sort by // the order added to the queue friend bool operator>(const Event& left, const Event& right) { return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order); } friend bool operator<(const Event& left, const Event& right) { return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order); } }; CoreTiming::CoreTiming() = default; CoreTiming::~CoreTiming() = default; void CoreTiming::Initialize() { downcount = MAX_SLICE_LENGTH; slice_length = MAX_SLICE_LENGTH; global_timer = 0; idled_cycles = 0; // The time between CoreTiming being initialized and the first call to Advance() is considered // the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before // executing the first cycle of each slice to prepare the slice length and downcount for // that slice. is_global_timer_sane = true; event_fifo_id = 0; const auto empty_timed_callback = [](u64, s64) {}; ev_lost = RegisterEvent("_lost_event", empty_timed_callback); } void CoreTiming::Shutdown() { ClearPendingEvents(); UnregisterAllEvents(); } EventType* CoreTiming::RegisterEvent(const std::string& name, TimedCallback callback) { std::lock_guard guard{inner_mutex}; // check for existing type with same name. // we want event type names to remain unique so that we can use them for serialization. ASSERT_MSG(event_types.find(name) == event_types.end(), "CoreTiming Event \"{}\" is already registered. Events should only be registered " "during Init to avoid breaking save states.", name.c_str()); auto info = event_types.emplace(name, EventType{callback, nullptr}); EventType* event_type = &info.first->second; event_type->name = &info.first->first; return event_type; } void CoreTiming::UnregisterAllEvents() { ASSERT_MSG(event_queue.empty(), "Cannot unregister events with events pending"); event_types.clear(); } void CoreTiming::ScheduleEvent(s64 cycles_into_future, const EventType* event_type, u64 userdata) { ASSERT(event_type != nullptr); std::lock_guard guard{inner_mutex}; const s64 timeout = GetTicks() + cycles_into_future; // If this event needs to be scheduled before the next advance(), force one early if (!is_global_timer_sane) { ForceExceptionCheck(cycles_into_future); } event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type}); std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) { std::lock_guard guard{inner_mutex}; const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { return e.type == event_type && e.userdata == userdata; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != event_queue.end()) { event_queue.erase(itr, event_queue.end()); std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } } u64 CoreTiming::GetTicks() const { u64 ticks = static_cast(global_timer); if (!is_global_timer_sane) { ticks += slice_length - downcount; } return ticks; } u64 CoreTiming::GetIdleTicks() const { return static_cast(idled_cycles); } void CoreTiming::AddTicks(u64 ticks) { downcount -= static_cast(ticks); } void CoreTiming::ClearPendingEvents() { event_queue.clear(); } void CoreTiming::RemoveEvent(const EventType* event_type) { std::lock_guard guard{inner_mutex}; const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) { return e.type == event_type; }); // Removing random items breaks the invariant so we have to re-establish it. if (itr != event_queue.end()) { event_queue.erase(itr, event_queue.end()); std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>()); } } void CoreTiming::ForceExceptionCheck(s64 cycles) { cycles = std::max(0, cycles); if (downcount <= cycles) { return; } // downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int // here. Account for cycles already executed by adjusting the g.slice_length slice_length -= downcount - static_cast(cycles); downcount = static_cast(cycles); } void CoreTiming::Advance() { std::unique_lock guard(inner_mutex); const int cycles_executed = slice_length - downcount; global_timer += cycles_executed; slice_length = MAX_SLICE_LENGTH; is_global_timer_sane = true; while (!event_queue.empty() && event_queue.front().time <= global_timer) { Event evt = std::move(event_queue.front()); std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>()); event_queue.pop_back(); inner_mutex.unlock(); evt.type->callback(evt.userdata, global_timer - evt.time); inner_mutex.lock(); } is_global_timer_sane = false; // Still events left (scheduled in the future) if (!event_queue.empty()) { slice_length = static_cast( std::min(event_queue.front().time - global_timer, MAX_SLICE_LENGTH)); } downcount = slice_length; } void CoreTiming::Idle() { idled_cycles += downcount; downcount = 0; } std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const { return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE}; } int CoreTiming::GetDowncount() const { return downcount; } } // namespace Core::Timing