// Copyright 2016 Citra Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "common/assert.h" #include "common/microprofile.h" #include "core/arm/dynarmic/arm_dynarmic.h" #include "core/arm/dynarmic/arm_dynarmic_cp15.h" #include "core/arm/dyncom/arm_dyncom_interpreter.h" #include "core/core.h" #include "core/core_timing.h" #include "core/hle/svc.h" #include "core/memory.h" static void InterpreterFallback(u64 pc, Dynarmic::Jit* jit, void* user_arg) { UNIMPLEMENTED_MSG("InterpreterFallback for ARM64 JIT does not exist!"); //ARMul_State* state = static_cast(user_arg); //state->Reg = jit->Regs(); //state->Cpsr = jit->Cpsr(); //state->Reg[15] = static_cast(pc); //state->ExtReg = jit->ExtRegs(); //state->VFP[VFP_FPSCR] = jit->Fpscr(); //state->NumInstrsToExecute = 1; //InterpreterMainLoop(state); //bool is_thumb = (state->Cpsr & (1 << 5)) != 0; //state->Reg[15] &= (is_thumb ? 0xFFFFFFFE : 0xFFFFFFFC); //jit->Regs() = state->Reg; //jit->Cpsr() = state->Cpsr; //jit->ExtRegs() = state->ExtReg; //jit->SetFpscr(state->VFP[VFP_FPSCR]); } static bool IsReadOnlyMemory(u64 vaddr) { // TODO(bunnei): ImplementMe return false; } u8 MemoryRead8(const u64 addr) { return Memory::Read8(static_cast(addr)); } u16 MemoryRead16(const u64 addr) { return Memory::Read16(static_cast(addr)); } u32 MemoryRead32(const u64 addr) { return Memory::Read32(static_cast(addr)); } u64 MemoryRead64(const u64 addr) { return Memory::Read64(static_cast(addr)); } void MemoryWrite8(const u64 addr, const u8 data) { Memory::Write8(static_cast(addr), data); } void MemoryWrite16(const u64 addr, const u16 data) { Memory::Write16(static_cast(addr), data); } void MemoryWrite32(const u64 addr, const u32 data) { Memory::Write32(static_cast(addr), data); } void MemoryWrite64(const u64 addr, const u64 data) { Memory::Write64(static_cast(addr), data); } static Dynarmic::UserCallbacks GetUserCallbacks( const std::shared_ptr& interpeter_state) { Dynarmic::UserCallbacks user_callbacks{}; //user_callbacks.InterpreterFallback = &InterpreterFallback; //user_callbacks.user_arg = static_cast(interpeter_state.get()); user_callbacks.CallSVC = &SVC::CallSVC; user_callbacks.memory.IsReadOnlyMemory = &IsReadOnlyMemory; user_callbacks.memory.ReadCode = &MemoryRead32; user_callbacks.memory.Read8 = &MemoryRead8; user_callbacks.memory.Read16 = &MemoryRead16; user_callbacks.memory.Read32 = &MemoryRead32; user_callbacks.memory.Read64 = &MemoryRead64; user_callbacks.memory.Write8 = &MemoryWrite8; user_callbacks.memory.Write16 = &MemoryWrite16; user_callbacks.memory.Write32 = &MemoryWrite32; user_callbacks.memory.Write64 = &MemoryWrite64; //user_callbacks.page_table = Memory::GetCurrentPageTablePointers(); user_callbacks.coprocessors[15] = std::make_shared(interpeter_state); return user_callbacks; } ARM_Dynarmic::ARM_Dynarmic(PrivilegeMode initial_mode) { interpreter_state = std::make_shared(initial_mode); jit = std::make_unique(GetUserCallbacks(interpreter_state), Dynarmic::Arch::ARM64); } void ARM_Dynarmic::SetPC(u64 pc) { jit->Regs64()[32] = pc; } u64 ARM_Dynarmic::GetPC() const { return jit->Regs64()[32]; } u64 ARM_Dynarmic::GetReg(int index) const { return jit->Regs64()[index]; } void ARM_Dynarmic::SetReg(int index, u64 value) { jit->Regs64()[index] = value; } u32 ARM_Dynarmic::GetVFPReg(int index) const { return jit->ExtRegs()[index]; } void ARM_Dynarmic::SetVFPReg(int index, u32 value) { jit->ExtRegs()[index] = value; } u32 ARM_Dynarmic::GetVFPSystemReg(VFPSystemRegister reg) const { if (reg == VFP_FPSCR) { return jit->Fpscr(); } // Dynarmic does not implement and/or expose other VFP registers, fallback to interpreter state return interpreter_state->VFP[reg]; } void ARM_Dynarmic::SetVFPSystemReg(VFPSystemRegister reg, u32 value) { if (reg == VFP_FPSCR) { jit->SetFpscr(value); } // Dynarmic does not implement and/or expose other VFP registers, fallback to interpreter state interpreter_state->VFP[reg] = value; } u32 ARM_Dynarmic::GetCPSR() const { return jit->Cpsr(); } void ARM_Dynarmic::SetCPSR(u32 cpsr) { jit->Cpsr() = cpsr; } u32 ARM_Dynarmic::GetCP15Register(CP15Register reg) { return interpreter_state->CP15[reg]; } void ARM_Dynarmic::SetCP15Register(CP15Register reg, u32 value) { interpreter_state->CP15[reg] = value; } void ARM_Dynarmic::AddTicks(u64 ticks) { down_count -= ticks; if (down_count < 0) { CoreTiming::Advance(); } } MICROPROFILE_DEFINE(ARM_Jit, "ARM JIT", "ARM JIT", MP_RGB(255, 64, 64)); void ARM_Dynarmic::ExecuteInstructions(int num_instructions) { MICROPROFILE_SCOPE(ARM_Jit); unsigned ticks_executed = jit->Run(1 /*static_cast(num_instructions)*/); AddTicks(ticks_executed); } void ARM_Dynarmic::SaveContext(ARM_Interface::ThreadContext& ctx) { memcpy(ctx.cpu_registers, jit->Regs64().data(), sizeof(ctx.cpu_registers)); //memcpy(ctx.fpu_registers, jit->ExtRegs().data(), sizeof(ctx.fpu_registers)); ctx.lr = jit->Regs64()[30]; ctx.sp = jit->Regs64()[31]; ctx.pc = jit->Regs64()[32]; ctx.cpsr = jit->Cpsr(); ctx.fpscr = jit->Fpscr(); ctx.fpexc = interpreter_state->VFP[VFP_FPEXC]; } void ARM_Dynarmic::LoadContext(const ARM_Interface::ThreadContext& ctx) { memcpy(jit->Regs64().data(), ctx.cpu_registers, sizeof(ctx.cpu_registers)); //memcpy(jit->ExtRegs().data(), ctx.fpu_registers, sizeof(ctx.fpu_registers)); jit->Regs64()[30] = ctx.lr; jit->Regs64()[31] = ctx.sp; jit->Regs64()[32] = ctx.pc; jit->Cpsr() = ctx.cpsr; jit->SetFpscr(ctx.fpscr); interpreter_state->VFP[VFP_FPEXC] = ctx.fpexc; } void ARM_Dynarmic::PrepareReschedule() { if (jit->IsExecuting()) { jit->HaltExecution(); } } void ARM_Dynarmic::ClearInstructionCache() { jit->ClearCache(); }