// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project // SPDX-FileCopyrightText: Copyright 2013 Dolphin Emulator Project / 2015 Citra Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #include #include #include #include #include #include #include #include #include "common/bit_util.h" #include "common/common_types.h" #include "common/logging/log.h" #include "common/x64/cpu_detect.h" #include "common/x64/rdtsc.h" #ifdef _WIN32 #include #endif #ifdef _MSC_VER #include static inline u64 xgetbv(u32 index) { return _xgetbv(index); } #else #if defined(__DragonFly__) || defined(__FreeBSD__) // clang-format off #include #include // clang-format on #endif static inline void __cpuidex(int info[4], u32 function_id, u32 subfunction_id) { #if defined(__DragonFly__) || defined(__FreeBSD__) // Despite the name, this is just do_cpuid() with ECX as second input. cpuid_count((u_int)function_id, (u_int)subfunction_id, (u_int*)info); #else info[0] = function_id; // eax info[2] = subfunction_id; // ecx __asm__("cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(function_id), "c"(subfunction_id)); #endif } static inline void __cpuid(int info[4], u32 function_id) { return __cpuidex(info, function_id, 0); } #define _XCR_XFEATURE_ENABLED_MASK 0 static inline u64 xgetbv(u32 index) { u32 eax, edx; __asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index)); return ((u64)edx << 32) | eax; } #endif // _MSC_VER namespace Common { CPUCaps::Manufacturer CPUCaps::ParseManufacturer(std::string_view brand_string) { if (brand_string == "GenuineIntel") { return Manufacturer::Intel; } else if (brand_string == "AuthenticAMD") { return Manufacturer::AMD; } else if (brand_string == "HygonGenuine") { return Manufacturer::Hygon; } return Manufacturer::Unknown; } // Detects the various CPU features static CPUCaps Detect() { CPUCaps caps = {}; // Assumes the CPU supports the CPUID instruction. Those that don't would likely not support // yuzu at all anyway int cpu_id[4]; // Detect CPU's CPUID capabilities and grab manufacturer string __cpuid(cpu_id, 0x00000000); const u32 max_std_fn = cpu_id[0]; // EAX std::memset(caps.brand_string, 0, std::size(caps.brand_string)); std::memcpy(&caps.brand_string[0], &cpu_id[1], sizeof(u32)); std::memcpy(&caps.brand_string[4], &cpu_id[3], sizeof(u32)); std::memcpy(&caps.brand_string[8], &cpu_id[2], sizeof(u32)); caps.manufacturer = CPUCaps::ParseManufacturer(caps.brand_string); // Set reasonable default cpu string even if brand string not available std::strncpy(caps.cpu_string, caps.brand_string, std::size(caps.brand_string)); __cpuid(cpu_id, 0x80000000); const u32 max_ex_fn = cpu_id[0]; // Detect family and other miscellaneous features if (max_std_fn >= 1) { __cpuid(cpu_id, 0x00000001); caps.sse = Common::Bit<25>(cpu_id[3]); caps.sse2 = Common::Bit<26>(cpu_id[3]); caps.sse3 = Common::Bit<0>(cpu_id[2]); caps.pclmulqdq = Common::Bit<1>(cpu_id[2]); caps.ssse3 = Common::Bit<9>(cpu_id[2]); caps.sse4_1 = Common::Bit<19>(cpu_id[2]); caps.sse4_2 = Common::Bit<20>(cpu_id[2]); caps.movbe = Common::Bit<22>(cpu_id[2]); caps.popcnt = Common::Bit<23>(cpu_id[2]); caps.aes = Common::Bit<25>(cpu_id[2]); caps.f16c = Common::Bit<29>(cpu_id[2]); // AVX support requires 3 separate checks: // - Is the AVX bit set in CPUID? // - Is the XSAVE bit set in CPUID? // - XGETBV result has the XCR bit set. if (Common::Bit<28>(cpu_id[2]) && Common::Bit<27>(cpu_id[2])) { if ((xgetbv(_XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6) { caps.avx = true; if (Common::Bit<12>(cpu_id[2])) caps.fma = true; } } if (max_std_fn >= 7) { __cpuidex(cpu_id, 0x00000007, 0x00000000); // Can't enable AVX{2,512} unless the XSAVE/XGETBV checks above passed if (caps.avx) { caps.avx2 = Common::Bit<5>(cpu_id[1]); caps.avx512f = Common::Bit<16>(cpu_id[1]); caps.avx512dq = Common::Bit<17>(cpu_id[1]); caps.avx512cd = Common::Bit<28>(cpu_id[1]); caps.avx512bw = Common::Bit<30>(cpu_id[1]); caps.avx512vl = Common::Bit<31>(cpu_id[1]); caps.avx512vbmi = Common::Bit<1>(cpu_id[2]); caps.avx512bitalg = Common::Bit<12>(cpu_id[2]); } caps.bmi1 = Common::Bit<3>(cpu_id[1]); caps.bmi2 = Common::Bit<8>(cpu_id[1]); caps.sha = Common::Bit<29>(cpu_id[1]); caps.waitpkg = Common::Bit<5>(cpu_id[2]); caps.gfni = Common::Bit<8>(cpu_id[2]); __cpuidex(cpu_id, 0x00000007, 0x00000001); caps.avx_vnni = caps.avx && Common::Bit<4>(cpu_id[0]); } } if (max_ex_fn >= 0x80000004) { // Extract CPU model string __cpuid(cpu_id, 0x80000002); std::memcpy(caps.cpu_string, cpu_id, sizeof(cpu_id)); __cpuid(cpu_id, 0x80000003); std::memcpy(caps.cpu_string + 16, cpu_id, sizeof(cpu_id)); __cpuid(cpu_id, 0x80000004); std::memcpy(caps.cpu_string + 32, cpu_id, sizeof(cpu_id)); } if (max_ex_fn >= 0x80000001) { // Check for more features __cpuid(cpu_id, 0x80000001); caps.lzcnt = Common::Bit<5>(cpu_id[2]); caps.fma4 = Common::Bit<16>(cpu_id[2]); caps.monitorx = Common::Bit<29>(cpu_id[2]); } if (max_ex_fn >= 0x80000007) { __cpuid(cpu_id, 0x80000007); caps.invariant_tsc = Common::Bit<8>(cpu_id[3]); } if (max_std_fn >= 0x15) { __cpuid(cpu_id, 0x15); caps.tsc_crystal_ratio_denominator = cpu_id[0]; caps.tsc_crystal_ratio_numerator = cpu_id[1]; caps.crystal_frequency = cpu_id[2]; // Some CPU models might not return a crystal frequency. // The CPU model can be detected to use the values from turbostat // https://github.com/torvalds/linux/blob/master/tools/power/x86/turbostat/turbostat.c#L5569 // but it's easier to just estimate the TSC tick rate for these cases. if (caps.tsc_crystal_ratio_denominator) { caps.tsc_frequency = static_cast(caps.crystal_frequency) * caps.tsc_crystal_ratio_numerator / caps.tsc_crystal_ratio_denominator; } else { caps.tsc_frequency = X64::EstimateRDTSCFrequency(); } } if (max_std_fn >= 0x16) { __cpuid(cpu_id, 0x16); caps.base_frequency = cpu_id[0]; caps.max_frequency = cpu_id[1]; caps.bus_frequency = cpu_id[2]; } return caps; } const CPUCaps& GetCPUCaps() { static CPUCaps caps = Detect(); return caps; } std::optional GetProcessorCount() { #if defined(_WIN32) // Get the buffer length. DWORD length = 0; GetLogicalProcessorInformation(nullptr, &length); if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { LOG_ERROR(Frontend, "Failed to query core count."); return std::nullopt; } std::vector buffer( length / sizeof(SYSTEM_LOGICAL_PROCESSOR_INFORMATION)); // Now query the core count. if (!GetLogicalProcessorInformation(buffer.data(), &length)) { LOG_ERROR(Frontend, "Failed to query core count."); return std::nullopt; } return static_cast( std::count_if(buffer.cbegin(), buffer.cend(), [](const auto& proc_info) { return proc_info.Relationship == RelationProcessorCore; })); #elif defined(__unix__) const int thread_count = std::thread::hardware_concurrency(); std::ifstream smt("/sys/devices/system/cpu/smt/active"); char state = '0'; if (smt) { smt.read(&state, sizeof(state)); } switch (state) { case '0': return thread_count; case '1': return thread_count / 2; default: return std::nullopt; } #else // Shame on you return std::nullopt; #endif } } // namespace Common