// Copyright 2020 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include #include #include "audio_core/algorithm/interpolate.h" #include "audio_core/command_generator.h" #include "audio_core/effect_context.h" #include "audio_core/mix_context.h" #include "audio_core/voice_context.h" #include "core/memory.h" namespace AudioCore { namespace { constexpr std::size_t MIX_BUFFER_SIZE = 0x3f00; constexpr std::size_t SCALED_MIX_BUFFER_SIZE = MIX_BUFFER_SIZE << 15ULL; using DelayLineTimes = std::array; constexpr DelayLineTimes FDN_MIN_DELAY_LINE_TIMES{5.0f, 6.0f, 13.0f, 14.0f}; constexpr DelayLineTimes FDN_MAX_DELAY_LINE_TIMES{45.704f, 82.782f, 149.94f, 271.58f}; constexpr DelayLineTimes DECAY0_MAX_DELAY_LINE_TIMES{17.0f, 13.0f, 9.0f, 7.0f}; constexpr DelayLineTimes DECAY1_MAX_DELAY_LINE_TIMES{19.0f, 11.0f, 10.0f, 6.0f}; constexpr std::array EARLY_TAP_TIMES{ 0.017136f, 0.059154f, 0.161733f, 0.390186f, 0.425262f, 0.455411f, 0.689737f, 0.745910f, 0.833844f, 0.859502f, 0.000000f, 0.075024f, 0.168788f, 0.299901f, 0.337443f, 0.371903f, 0.599011f, 0.716741f, 0.817859f, 0.851664f}; constexpr std::array EARLY_GAIN{ 0.67096f, 0.61027f, 1.0f, 0.35680f, 0.68361f, 0.65978f, 0.51939f, 0.24712f, 0.45945f, 0.45021f, 0.64196f, 0.54879f, 0.92925f, 0.38270f, 0.72867f, 0.69794f, 0.5464f, 0.24563f, 0.45214f, 0.44042f}; template void ApplyMix(s32* output, const s32* input, s32 gain, s32 sample_count) { for (std::size_t i = 0; i < static_cast(sample_count); i += N) { for (std::size_t j = 0; j < N; j++) { output[i + j] += static_cast((static_cast(input[i + j]) * gain + 0x4000) >> 15); } } } s32 ApplyMixRamp(s32* output, const s32* input, float gain, float delta, s32 sample_count) { s32 x = 0; for (s32 i = 0; i < sample_count; i++) { x = static_cast(static_cast(input[i]) * gain); output[i] += x; gain += delta; } return x; } void ApplyGain(s32* output, const s32* input, s32 gain, s32 delta, s32 sample_count) { for (s32 i = 0; i < sample_count; i++) { output[i] = static_cast((static_cast(input[i]) * gain + 0x4000) >> 15); gain += delta; } } void ApplyGainWithoutDelta(s32* output, const s32* input, s32 gain, s32 sample_count) { for (s32 i = 0; i < sample_count; i++) { output[i] = static_cast((static_cast(input[i]) * gain + 0x4000) >> 15); } } s32 ApplyMixDepop(s32* output, s32 first_sample, s32 delta, s32 sample_count) { const bool positive = first_sample > 0; auto final_sample = std::abs(first_sample); for (s32 i = 0; i < sample_count; i++) { final_sample = static_cast((static_cast(final_sample) * delta) >> 15); if (positive) { output[i] += final_sample; } else { output[i] -= final_sample; } } if (positive) { return final_sample; } else { return -final_sample; } } float Pow10(float x) { if (x >= 0.0f) { return 1.0f; } else if (x <= -5.3f) { return 0.0f; } return std::pow(10.0f, x); } float SinD(float degrees) { return std::sin(degrees * std::numbers::pi_v / 180.0f); } float CosD(float degrees) { return std::cos(degrees * std::numbers::pi_v / 180.0f); } float ToFloat(s32 sample) { return static_cast(sample) / 65536.f; } s32 ToS32(float sample) { constexpr auto min = -8388608.0f; constexpr auto max = 8388607.f; float rescaled_sample = sample * 65536.0f; if (rescaled_sample < min) { rescaled_sample = min; } if (rescaled_sample > max) { rescaled_sample = max; } return static_cast(rescaled_sample); } constexpr std::array REVERB_TAP_INDEX_1CH{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; constexpr std::array REVERB_TAP_INDEX_2CH{0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1}; constexpr std::array REVERB_TAP_INDEX_4CH{0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 3, 3, 3}; constexpr std::array REVERB_TAP_INDEX_6CH{4, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 3, 3, 3}; template void ApplyReverbGeneric(I3dl2ReverbState& state, const std::array& input, const std::array& output, s32 sample_count) { auto GetTapLookup = []() { if constexpr (CHANNEL_COUNT == 1) { return REVERB_TAP_INDEX_1CH; } else if constexpr (CHANNEL_COUNT == 2) { return REVERB_TAP_INDEX_2CH; } else if constexpr (CHANNEL_COUNT == 4) { return REVERB_TAP_INDEX_4CH; } else if constexpr (CHANNEL_COUNT == 6) { return REVERB_TAP_INDEX_6CH; } }; const auto& tap_index_lut = GetTapLookup(); for (s32 sample = 0; sample < sample_count; sample++) { std::array out_samples{}; std::array fsamp{}; std::array mixed{}; std::array osamp{}; // Mix everything into a single sample s32 temp_mixed_sample = 0; for (std::size_t i = 0; i < CHANNEL_COUNT; i++) { temp_mixed_sample += input[i][sample]; } const auto current_sample = ToFloat(temp_mixed_sample); const auto early_tap = state.early_delay_line.TapOut(state.early_to_late_taps); for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_TAPS; i++) { const auto tapped_samp = state.early_delay_line.TapOut(state.early_tap_steps[i]) * EARLY_GAIN[i]; out_samples[tap_index_lut[i]] += tapped_samp; if constexpr (CHANNEL_COUNT == 6) { // handle lfe out_samples[5] += tapped_samp; } } state.lowpass_0 = current_sample * state.lowpass_2 + state.lowpass_0 * state.lowpass_1; state.early_delay_line.Tick(state.lowpass_0); for (std::size_t i = 0; i < CHANNEL_COUNT; i++) { out_samples[i] *= state.early_gain; } // Two channel seems to apply a latet gain, we require to save this f32 filter{}; for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) { filter = state.fdn_delay_line[i].GetOutputSample(); const auto computed = filter * state.lpf_coefficients[0][i] + state.shelf_filter[i]; state.shelf_filter[i] = filter * state.lpf_coefficients[1][i] + computed * state.lpf_coefficients[2][i]; fsamp[i] = computed; } // Mixing matrix mixed[0] = fsamp[1] + fsamp[2]; mixed[1] = -fsamp[0] - fsamp[3]; mixed[2] = fsamp[0] - fsamp[3]; mixed[3] = fsamp[1] - fsamp[2]; if constexpr (CHANNEL_COUNT == 2) { for (auto& mix : mixed) { mix *= (filter * state.late_gain); } } for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) { const auto late = early_tap * state.late_gain; osamp[i] = state.decay_delay_line0[i].Tick(late + mixed[i]); osamp[i] = state.decay_delay_line1[i].Tick(osamp[i]); state.fdn_delay_line[i].Tick(osamp[i]); } if constexpr (CHANNEL_COUNT == 1) { output[0][sample] = ToS32(state.dry_gain * ToFloat(input[0][sample]) + (out_samples[0] + osamp[0] + osamp[1])); } else if constexpr (CHANNEL_COUNT == 2 || CHANNEL_COUNT == 4) { for (std::size_t i = 0; i < CHANNEL_COUNT; i++) { output[i][sample] = ToS32(state.dry_gain * ToFloat(input[i][sample]) + (out_samples[i] + osamp[i])); } } else if constexpr (CHANNEL_COUNT == 6) { const auto temp_center = state.center_delay_line.Tick(0.5f * (osamp[2] - osamp[3])); for (std::size_t i = 0; i < 4; i++) { output[i][sample] = ToS32(state.dry_gain * ToFloat(input[i][sample]) + (out_samples[i] + osamp[i])); } output[4][sample] = ToS32(state.dry_gain * ToFloat(input[4][sample]) + (out_samples[4] + temp_center)); output[5][sample] = ToS32(state.dry_gain * ToFloat(input[5][sample]) + (out_samples[5] + osamp[3])); } } } } // namespace CommandGenerator::CommandGenerator(AudioCommon::AudioRendererParameter& worker_params_, VoiceContext& voice_context_, MixContext& mix_context_, SplitterContext& splitter_context_, EffectContext& effect_context_, Core::Memory::Memory& memory_) : worker_params(worker_params_), voice_context(voice_context_), mix_context(mix_context_), splitter_context(splitter_context_), effect_context(effect_context_), memory(memory_), mix_buffer((worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT) * worker_params.sample_count), sample_buffer(MIX_BUFFER_SIZE), depop_buffer((worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT) * worker_params.sample_count) {} CommandGenerator::~CommandGenerator() = default; void CommandGenerator::ClearMixBuffers() { std::fill(mix_buffer.begin(), mix_buffer.end(), 0); std::fill(sample_buffer.begin(), sample_buffer.end(), 0); // std::fill(depop_buffer.begin(), depop_buffer.end(), 0); } void CommandGenerator::GenerateVoiceCommands() { if (dumping_frame) { LOG_DEBUG(Audio, "(DSP_TRACE) GenerateVoiceCommands"); } // Grab all our voices const auto voice_count = voice_context.GetVoiceCount(); for (std::size_t i = 0; i < voice_count; i++) { auto& voice_info = voice_context.GetSortedInfo(i); // Update voices and check if we should queue them if (voice_info.ShouldSkip() || !voice_info.UpdateForCommandGeneration(voice_context)) { continue; } // Queue our voice GenerateVoiceCommand(voice_info); } // Update our splitters splitter_context.UpdateInternalState(); } void CommandGenerator::GenerateVoiceCommand(ServerVoiceInfo& voice_info) { auto& in_params = voice_info.GetInParams(); const auto channel_count = in_params.channel_count; for (s32 channel = 0; channel < channel_count; channel++) { const auto resource_id = in_params.voice_channel_resource_id[channel]; auto& dsp_state = voice_context.GetDspSharedState(resource_id); auto& channel_resource = voice_context.GetChannelResource(resource_id); // Decode our samples for our channel GenerateDataSourceCommand(voice_info, dsp_state, channel); if (in_params.should_depop) { in_params.last_volume = 0.0f; } else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER || in_params.mix_id != AudioCommon::NO_MIX) { // Apply a biquad filter if needed GenerateBiquadFilterCommandForVoice(voice_info, dsp_state, worker_params.mix_buffer_count, channel); // Base voice volume ramping GenerateVolumeRampCommand(in_params.last_volume, in_params.volume, channel, in_params.node_id); in_params.last_volume = in_params.volume; if (in_params.mix_id != AudioCommon::NO_MIX) { // If we're using a mix id auto& mix_info = mix_context.GetInfo(in_params.mix_id); const auto& dest_mix_params = mix_info.GetInParams(); // Voice Mixing GenerateVoiceMixCommand( channel_resource.GetCurrentMixVolume(), channel_resource.GetLastMixVolume(), dsp_state, dest_mix_params.buffer_offset, dest_mix_params.buffer_count, worker_params.mix_buffer_count + channel, in_params.node_id); // Update last mix volumes channel_resource.UpdateLastMixVolumes(); } else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER) { s32 base = channel; while (auto* destination_data = GetDestinationData(in_params.splitter_info_id, base)) { base += channel_count; if (!destination_data->IsConfigured()) { continue; } if (destination_data->GetMixId() >= static_cast(mix_context.GetCount())) { continue; } const auto& mix_info = mix_context.GetInfo(destination_data->GetMixId()); const auto& dest_mix_params = mix_info.GetInParams(); GenerateVoiceMixCommand( destination_data->CurrentMixVolumes(), destination_data->LastMixVolumes(), dsp_state, dest_mix_params.buffer_offset, dest_mix_params.buffer_count, worker_params.mix_buffer_count + channel, in_params.node_id); destination_data->MarkDirty(); } } // Update biquad filter enabled states for (std::size_t i = 0; i < AudioCommon::MAX_BIQUAD_FILTERS; i++) { in_params.was_biquad_filter_enabled[i] = in_params.biquad_filter[i].enabled; } } } } void CommandGenerator::GenerateSubMixCommands() { const auto mix_count = mix_context.GetCount(); for (std::size_t i = 0; i < mix_count; i++) { auto& mix_info = mix_context.GetSortedInfo(i); const auto& in_params = mix_info.GetInParams(); if (!in_params.in_use || in_params.mix_id == AudioCommon::FINAL_MIX) { continue; } GenerateSubMixCommand(mix_info); } } void CommandGenerator::GenerateFinalMixCommands() { GenerateFinalMixCommand(); } void CommandGenerator::PreCommand() { if (!dumping_frame) { return; } for (std::size_t i = 0; i < splitter_context.GetInfoCount(); i++) { const auto& base = splitter_context.GetInfo(i); std::string graph = fmt::format("b[{}]", i); const auto* head = base.GetHead(); while (head != nullptr) { graph += fmt::format("->{}", head->GetMixId()); head = head->GetNextDestination(); } LOG_DEBUG(Audio, "(DSP_TRACE) SplitterGraph splitter_info={}, {}", i, graph); } } void CommandGenerator::PostCommand() { if (!dumping_frame) { return; } dumping_frame = false; } void CommandGenerator::GenerateDataSourceCommand(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 channel) { const auto& in_params = voice_info.GetInParams(); const auto depop = in_params.should_depop; if (depop) { if (in_params.mix_id != AudioCommon::NO_MIX) { auto& mix_info = mix_context.GetInfo(in_params.mix_id); const auto& mix_in = mix_info.GetInParams(); GenerateDepopPrepareCommand(dsp_state, mix_in.buffer_count, mix_in.buffer_offset); } else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER) { s32 index{}; while (const auto* destination = GetDestinationData(in_params.splitter_info_id, index++)) { if (!destination->IsConfigured()) { continue; } auto& mix_info = mix_context.GetInfo(destination->GetMixId()); const auto& mix_in = mix_info.GetInParams(); GenerateDepopPrepareCommand(dsp_state, mix_in.buffer_count, mix_in.buffer_offset); } } } else { switch (in_params.sample_format) { case SampleFormat::Pcm16: DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(channel), dsp_state, channel, worker_params.sample_rate, worker_params.sample_count, in_params.node_id); break; case SampleFormat::Adpcm: ASSERT(channel == 0 && in_params.channel_count == 1); DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(0), dsp_state, 0, worker_params.sample_rate, worker_params.sample_count, in_params.node_id); break; default: UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format); } } } void CommandGenerator::GenerateBiquadFilterCommandForVoice(ServerVoiceInfo& voice_info, VoiceState& dsp_state, [[maybe_unused]] s32 mix_buffer_count, [[maybe_unused]] s32 channel) { for (std::size_t i = 0; i < AudioCommon::MAX_BIQUAD_FILTERS; i++) { const auto& in_params = voice_info.GetInParams(); auto& biquad_filter = in_params.biquad_filter[i]; // Check if biquad filter is actually used if (!biquad_filter.enabled) { continue; } // Reinitialize our biquad filter state if it was enabled previously if (!in_params.was_biquad_filter_enabled[i]) { dsp_state.biquad_filter_state.fill(0); } // Generate biquad filter // GenerateBiquadFilterCommand(mix_buffer_count, biquad_filter, // dsp_state.biquad_filter_state, // mix_buffer_count + channel, mix_buffer_count + channel, // worker_params.sample_count, voice_info.GetInParams().node_id); } } void CommandGenerator::GenerateBiquadFilterCommand([[maybe_unused]] s32 mix_buffer_id, const BiquadFilterParameter& params, std::array& state, std::size_t input_offset, std::size_t output_offset, s32 sample_count, s32 node_id) { if (dumping_frame) { LOG_DEBUG(Audio, "(DSP_TRACE) GenerateBiquadFilterCommand node_id={}, " "input_mix_buffer={}, output_mix_buffer={}", node_id, input_offset, output_offset); } const auto* input = GetMixBuffer(input_offset); auto* output = GetMixBuffer(output_offset); // Biquad filter parameters const auto [n0, n1, n2] = params.numerator; const auto [d0, d1] = params.denominator; // Biquad filter states auto [s0, s1] = state; constexpr s64 int32_min = std::numeric_limits::min(); constexpr s64 int32_max = std::numeric_limits::max(); for (int i = 0; i < sample_count; ++i) { const auto sample = static_cast(input[i]); const auto f = (sample * n0 + s0 + 0x4000) >> 15; const auto y = std::clamp(f, int32_min, int32_max); s0 = sample * n1 + y * d0 + s1; s1 = sample * n2 + y * d1; output[i] = static_cast(y); } state = {s0, s1}; } void CommandGenerator::GenerateDepopPrepareCommand(VoiceState& dsp_state, std::size_t mix_buffer_count, std::size_t mix_buffer_offset) { for (std::size_t i = 0; i < mix_buffer_count; i++) { auto& sample = dsp_state.previous_samples[i]; if (sample != 0) { depop_buffer[mix_buffer_offset + i] += sample; sample = 0; } } } void CommandGenerator::GenerateDepopForMixBuffersCommand(std::size_t mix_buffer_count, std::size_t mix_buffer_offset, s32 sample_rate) { const std::size_t end_offset = std::min(mix_buffer_offset + mix_buffer_count, GetTotalMixBufferCount()); const s32 delta = sample_rate == 48000 ? 0x7B29 : 0x78CB; for (std::size_t i = mix_buffer_offset; i < end_offset; i++) { if (depop_buffer[i] == 0) { continue; } depop_buffer[i] = ApplyMixDepop(GetMixBuffer(i), depop_buffer[i], delta, worker_params.sample_count); } } void CommandGenerator::GenerateEffectCommand(ServerMixInfo& mix_info) { const std::size_t effect_count = effect_context.GetCount(); const auto buffer_offset = mix_info.GetInParams().buffer_offset; for (std::size_t i = 0; i < effect_count; i++) { const auto index = mix_info.GetEffectOrder(i); if (index == AudioCommon::NO_EFFECT_ORDER) { break; } auto* info = effect_context.GetInfo(index); const auto type = info->GetType(); // TODO(ogniK): Finish remaining effects switch (type) { case EffectType::Aux: GenerateAuxCommand(buffer_offset, info, info->IsEnabled()); break; case EffectType::I3dl2Reverb: GenerateI3dl2ReverbEffectCommand(buffer_offset, info, info->IsEnabled()); break; case EffectType::BiquadFilter: GenerateBiquadFilterEffectCommand(buffer_offset, info, info->IsEnabled()); break; default: break; } info->UpdateForCommandGeneration(); } } void CommandGenerator::GenerateI3dl2ReverbEffectCommand(s32 mix_buffer_offset, EffectBase* info, bool enabled) { auto* reverb = dynamic_cast(info); const auto& params = reverb->GetParams(); auto& state = reverb->GetState(); const auto channel_count = params.channel_count; if (channel_count != 1 && channel_count != 2 && channel_count != 4 && channel_count != 6) { return; } std::array input{}; std::array output{}; const auto status = params.status; for (s32 i = 0; i < channel_count; i++) { input[i] = GetMixBuffer(mix_buffer_offset + params.input[i]); output[i] = GetMixBuffer(mix_buffer_offset + params.output[i]); } if (enabled) { if (status == ParameterStatus::Initialized) { InitializeI3dl2Reverb(reverb->GetParams(), state, info->GetWorkBuffer()); } else if (status == ParameterStatus::Updating) { UpdateI3dl2Reverb(reverb->GetParams(), state, false); } } if (enabled) { switch (channel_count) { case 1: ApplyReverbGeneric<1>(state, input, output, worker_params.sample_count); break; case 2: ApplyReverbGeneric<2>(state, input, output, worker_params.sample_count); break; case 4: ApplyReverbGeneric<4>(state, input, output, worker_params.sample_count); break; case 6: ApplyReverbGeneric<6>(state, input, output, worker_params.sample_count); break; } } else { for (s32 i = 0; i < channel_count; i++) { // Only copy if the buffer input and output do not match! if ((mix_buffer_offset + params.input[i]) != (mix_buffer_offset + params.output[i])) { std::memcpy(output[i], input[i], worker_params.sample_count * sizeof(s32)); } } } } void CommandGenerator::GenerateBiquadFilterEffectCommand(s32 mix_buffer_offset, EffectBase* info, bool enabled) { if (!enabled) { return; } const auto& params = dynamic_cast(info)->GetParams(); const auto channel_count = params.channel_count; for (s32 i = 0; i < channel_count; i++) { // TODO(ogniK): Actually implement biquad filter if (params.input[i] != params.output[i]) { const auto* input = GetMixBuffer(mix_buffer_offset + params.input[i]); auto* output = GetMixBuffer(mix_buffer_offset + params.output[i]); ApplyMix<1>(output, input, 32768, worker_params.sample_count); } } } void CommandGenerator::GenerateAuxCommand(s32 mix_buffer_offset, EffectBase* info, bool enabled) { auto* aux = dynamic_cast(info); const auto& params = aux->GetParams(); if (aux->GetSendBuffer() != 0 && aux->GetRecvBuffer() != 0) { const auto max_channels = params.count; u32 offset{}; for (u32 channel = 0; channel < max_channels; channel++) { u32 write_count = 0; if (channel == (max_channels - 1)) { write_count = offset + worker_params.sample_count; } const auto input_index = params.input_mix_buffers[channel] + mix_buffer_offset; const auto output_index = params.output_mix_buffers[channel] + mix_buffer_offset; if (enabled) { AuxInfoDSP send_info{}; AuxInfoDSP recv_info{}; memory.ReadBlock(aux->GetSendInfo(), &send_info, sizeof(AuxInfoDSP)); memory.ReadBlock(aux->GetRecvInfo(), &recv_info, sizeof(AuxInfoDSP)); WriteAuxBuffer(send_info, aux->GetSendBuffer(), params.sample_count, GetMixBuffer(input_index), worker_params.sample_count, offset, write_count); memory.WriteBlock(aux->GetSendInfo(), &send_info, sizeof(AuxInfoDSP)); const auto samples_read = ReadAuxBuffer( recv_info, aux->GetRecvBuffer(), params.sample_count, GetMixBuffer(output_index), worker_params.sample_count, offset, write_count); memory.WriteBlock(aux->GetRecvInfo(), &recv_info, sizeof(AuxInfoDSP)); if (samples_read != static_cast(worker_params.sample_count) && samples_read <= params.sample_count) { std::memset(GetMixBuffer(output_index), 0, params.sample_count - samples_read); } } else { AuxInfoDSP empty{}; memory.WriteBlock(aux->GetSendInfo(), &empty, sizeof(AuxInfoDSP)); memory.WriteBlock(aux->GetRecvInfo(), &empty, sizeof(AuxInfoDSP)); if (output_index != input_index) { std::memcpy(GetMixBuffer(output_index), GetMixBuffer(input_index), worker_params.sample_count * sizeof(s32)); } } offset += worker_params.sample_count; } } } ServerSplitterDestinationData* CommandGenerator::GetDestinationData(s32 splitter_id, s32 index) { if (splitter_id == AudioCommon::NO_SPLITTER) { return nullptr; } return splitter_context.GetDestinationData(splitter_id, index); } s32 CommandGenerator::WriteAuxBuffer(AuxInfoDSP& dsp_info, VAddr send_buffer, u32 max_samples, const s32* data, u32 sample_count, u32 write_offset, u32 write_count) { if (max_samples == 0) { return 0; } u32 offset = dsp_info.write_offset + write_offset; if (send_buffer == 0 || offset > max_samples) { return 0; } std::size_t data_offset{}; u32 remaining = sample_count; while (remaining > 0) { // Get position in buffer const auto base = send_buffer + (offset * sizeof(u32)); const auto samples_to_grab = std::min(max_samples - offset, remaining); // Write to output memory.WriteBlock(base, (data + data_offset), samples_to_grab * sizeof(u32)); offset = (offset + samples_to_grab) % max_samples; remaining -= samples_to_grab; data_offset += samples_to_grab; } if (write_count != 0) { dsp_info.write_offset = (dsp_info.write_offset + write_count) % max_samples; } return sample_count; } s32 CommandGenerator::ReadAuxBuffer(AuxInfoDSP& recv_info, VAddr recv_buffer, u32 max_samples, s32* out_data, u32 sample_count, u32 read_offset, u32 read_count) { if (max_samples == 0) { return 0; } u32 offset = recv_info.read_offset + read_offset; if (recv_buffer == 0 || offset > max_samples) { return 0; } u32 remaining = sample_count; while (remaining > 0) { const auto base = recv_buffer + (offset * sizeof(u32)); const auto samples_to_grab = std::min(max_samples - offset, remaining); std::vector buffer(samples_to_grab); memory.ReadBlock(base, buffer.data(), buffer.size() * sizeof(u32)); std::memcpy(out_data, buffer.data(), buffer.size() * sizeof(u32)); out_data += samples_to_grab; offset = (offset + samples_to_grab) % max_samples; remaining -= samples_to_grab; } if (read_count != 0) { recv_info.read_offset = (recv_info.read_offset + read_count) % max_samples; } return sample_count; } void CommandGenerator::InitializeI3dl2Reverb(I3dl2ReverbParams& info, I3dl2ReverbState& state, std::vector& work_buffer) { // Reset state state.lowpass_0 = 0.0f; state.lowpass_1 = 0.0f; state.lowpass_2 = 0.0f; state.early_delay_line.Reset(); state.early_tap_steps.fill(0); state.early_gain = 0.0f; state.late_gain = 0.0f; state.early_to_late_taps = 0; for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) { state.fdn_delay_line[i].Reset(); state.decay_delay_line0[i].Reset(); state.decay_delay_line1[i].Reset(); } state.last_reverb_echo = 0.0f; state.center_delay_line.Reset(); for (auto& coef : state.lpf_coefficients) { coef.fill(0.0f); } state.shelf_filter.fill(0.0f); state.dry_gain = 0.0f; const auto sample_rate = info.sample_rate / 1000; f32* work_buffer_ptr = reinterpret_cast(work_buffer.data()); s32 delay_samples{}; for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) { delay_samples = AudioCommon::CalculateDelaySamples(sample_rate, FDN_MAX_DELAY_LINE_TIMES[i]); state.fdn_delay_line[i].Initialize(delay_samples, work_buffer_ptr); work_buffer_ptr += delay_samples + 1; delay_samples = AudioCommon::CalculateDelaySamples(sample_rate, DECAY0_MAX_DELAY_LINE_TIMES[i]); state.decay_delay_line0[i].Initialize(delay_samples, 0.0f, work_buffer_ptr); work_buffer_ptr += delay_samples + 1; delay_samples = AudioCommon::CalculateDelaySamples(sample_rate, DECAY1_MAX_DELAY_LINE_TIMES[i]); state.decay_delay_line1[i].Initialize(delay_samples, 0.0f, work_buffer_ptr); work_buffer_ptr += delay_samples + 1; } delay_samples = AudioCommon::CalculateDelaySamples(sample_rate, 5.0f); state.center_delay_line.Initialize(delay_samples, work_buffer_ptr); work_buffer_ptr += delay_samples + 1; delay_samples = AudioCommon::CalculateDelaySamples(sample_rate, 400.0f); state.early_delay_line.Initialize(delay_samples, work_buffer_ptr); UpdateI3dl2Reverb(info, state, true); } void CommandGenerator::UpdateI3dl2Reverb(I3dl2ReverbParams& info, I3dl2ReverbState& state, bool should_clear) { state.dry_gain = info.dry_gain; state.shelf_filter.fill(0.0f); state.lowpass_0 = 0.0f; state.early_gain = Pow10(std::min(info.room + info.reflection, 5000.0f) / 2000.0f); state.late_gain = Pow10(std::min(info.room + info.reverb, 5000.0f) / 2000.0f); const auto sample_rate = info.sample_rate / 1000; const f32 hf_gain = Pow10(info.room_hf / 2000.0f); if (hf_gain >= 1.0f) { state.lowpass_2 = 1.0f; state.lowpass_1 = 0.0f; } else { const auto a = 1.0f - hf_gain; const auto b = 2.0f * (2.0f - hf_gain * CosD(256.0f * info.hf_reference / static_cast(info.sample_rate))); const auto c = std::sqrt(b * b - 4.0f * a * a); state.lowpass_1 = (b - c) / (2.0f * a); state.lowpass_2 = 1.0f - state.lowpass_1; } state.early_to_late_taps = AudioCommon::CalculateDelaySamples( sample_rate, 1000.0f * (info.reflection_delay + info.reverb_delay)); state.last_reverb_echo = 0.6f * info.diffusion * 0.01f; for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) { const auto length = FDN_MIN_DELAY_LINE_TIMES[i] + (info.density / 100.0f) * (FDN_MAX_DELAY_LINE_TIMES[i] - FDN_MIN_DELAY_LINE_TIMES[i]); state.fdn_delay_line[i].SetDelay(AudioCommon::CalculateDelaySamples(sample_rate, length)); const auto delay_sample_counts = state.fdn_delay_line[i].GetDelay() + state.decay_delay_line0[i].GetDelay() + state.decay_delay_line1[i].GetDelay(); float a = (-60.0f * static_cast(delay_sample_counts)) / (info.decay_time * static_cast(info.sample_rate)); float b = a / info.hf_decay_ratio; float c = CosD(128.0f * 0.5f * info.hf_reference / static_cast(info.sample_rate)) / SinD(128.0f * 0.5f * info.hf_reference / static_cast(info.sample_rate)); float d = Pow10((b - a) / 40.0f); float e = Pow10((b + a) / 40.0f) * 0.7071f; state.lpf_coefficients[0][i] = e * ((d * c) + 1.0f) / (c + d); state.lpf_coefficients[1][i] = e * (1.0f - (d * c)) / (c + d); state.lpf_coefficients[2][i] = (c - d) / (c + d); state.decay_delay_line0[i].SetCoefficient(state.last_reverb_echo); state.decay_delay_line1[i].SetCoefficient(-0.9f * state.last_reverb_echo); } if (should_clear) { for (std::size_t i = 0; i < AudioCommon::I3DL2REVERB_DELAY_LINE_COUNT; i++) { state.fdn_delay_line[i].Clear(); state.decay_delay_line0[i].Clear(); state.decay_delay_line1[i].Clear(); } state.early_delay_line.Clear(); state.center_delay_line.Clear(); } const auto max_early_delay = state.early_delay_line.GetMaxDelay(); const auto reflection_time = 1000.0f * (0.9998f * info.reverb_delay + 0.02f); for (std::size_t tap = 0; tap < AudioCommon::I3DL2REVERB_TAPS; tap++) { const auto length = AudioCommon::CalculateDelaySamples( sample_rate, 1000.0f * info.reflection_delay + reflection_time * EARLY_TAP_TIMES[tap]); state.early_tap_steps[tap] = std::min(length, max_early_delay); } } void CommandGenerator::GenerateVolumeRampCommand(float last_volume, float current_volume, s32 channel, s32 node_id) { const auto last = static_cast(last_volume * 32768.0f); const auto current = static_cast(current_volume * 32768.0f); const auto delta = static_cast((static_cast(current) - static_cast(last)) / static_cast(worker_params.sample_count)); if (dumping_frame) { LOG_DEBUG(Audio, "(DSP_TRACE) GenerateVolumeRampCommand node_id={}, input={}, output={}, " "last_volume={}, current_volume={}", node_id, GetMixChannelBufferOffset(channel), GetMixChannelBufferOffset(channel), last_volume, current_volume); } // Apply generic gain on samples ApplyGain(GetChannelMixBuffer(channel), GetChannelMixBuffer(channel), last, delta, worker_params.sample_count); } void CommandGenerator::GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volumes, const MixVolumeBuffer& last_mix_volumes, VoiceState& dsp_state, s32 mix_buffer_offset, s32 mix_buffer_count, s32 voice_index, s32 node_id) { // Loop all our mix buffers for (s32 i = 0; i < mix_buffer_count; i++) { if (last_mix_volumes[i] != 0.0f || mix_volumes[i] != 0.0f) { const auto delta = static_cast((mix_volumes[i] - last_mix_volumes[i])) / static_cast(worker_params.sample_count); if (dumping_frame) { LOG_DEBUG(Audio, "(DSP_TRACE) GenerateVoiceMixCommand node_id={}, input={}, " "output={}, last_volume={}, current_volume={}", node_id, voice_index, mix_buffer_offset + i, last_mix_volumes[i], mix_volumes[i]); } dsp_state.previous_samples[i] = ApplyMixRamp(GetMixBuffer(mix_buffer_offset + i), GetMixBuffer(voice_index), last_mix_volumes[i], delta, worker_params.sample_count); } else { dsp_state.previous_samples[i] = 0; } } } void CommandGenerator::GenerateSubMixCommand(ServerMixInfo& mix_info) { if (dumping_frame) { LOG_DEBUG(Audio, "(DSP_TRACE) GenerateSubMixCommand"); } const auto& in_params = mix_info.GetInParams(); GenerateDepopForMixBuffersCommand(in_params.buffer_count, in_params.buffer_offset, in_params.sample_rate); GenerateEffectCommand(mix_info); GenerateMixCommands(mix_info); } void CommandGenerator::GenerateMixCommands(ServerMixInfo& mix_info) { if (!mix_info.HasAnyConnection()) { return; } const auto& in_params = mix_info.GetInParams(); if (in_params.dest_mix_id != AudioCommon::NO_MIX) { const auto& dest_mix = mix_context.GetInfo(in_params.dest_mix_id); const auto& dest_in_params = dest_mix.GetInParams(); const auto buffer_count = in_params.buffer_count; for (s32 i = 0; i < buffer_count; i++) { for (s32 j = 0; j < dest_in_params.buffer_count; j++) { const auto mixed_volume = in_params.volume * in_params.mix_volume[i][j]; if (mixed_volume != 0.0f) { GenerateMixCommand(dest_in_params.buffer_offset + j, in_params.buffer_offset + i, mixed_volume, in_params.node_id); } } } } else if (in_params.splitter_id != AudioCommon::NO_SPLITTER) { s32 base{}; while (const auto* destination_data = GetDestinationData(in_params.splitter_id, base++)) { if (!destination_data->IsConfigured()) { continue; } const auto& dest_mix = mix_context.GetInfo(destination_data->GetMixId()); const auto& dest_in_params = dest_mix.GetInParams(); const auto mix_index = (base - 1) % in_params.buffer_count + in_params.buffer_offset; for (std::size_t i = 0; i < static_cast(dest_in_params.buffer_count); i++) { const auto mixed_volume = in_params.volume * destination_data->GetMixVolume(i); if (mixed_volume != 0.0f) { GenerateMixCommand(dest_in_params.buffer_offset + i, mix_index, mixed_volume, in_params.node_id); } } } } } void CommandGenerator::GenerateMixCommand(std::size_t output_offset, std::size_t input_offset, float volume, s32 node_id) { if (dumping_frame) { LOG_DEBUG(Audio, "(DSP_TRACE) GenerateMixCommand node_id={}, input={}, output={}, volume={}", node_id, input_offset, output_offset, volume); } auto* output = GetMixBuffer(output_offset); const auto* input = GetMixBuffer(input_offset); const s32 gain = static_cast(volume * 32768.0f); // Mix with loop unrolling if (worker_params.sample_count % 4 == 0) { ApplyMix<4>(output, input, gain, worker_params.sample_count); } else if (worker_params.sample_count % 2 == 0) { ApplyMix<2>(output, input, gain, worker_params.sample_count); } else { ApplyMix<1>(output, input, gain, worker_params.sample_count); } } void CommandGenerator::GenerateFinalMixCommand() { if (dumping_frame) { LOG_DEBUG(Audio, "(DSP_TRACE) GenerateFinalMixCommand"); } auto& mix_info = mix_context.GetFinalMixInfo(); const auto& in_params = mix_info.GetInParams(); GenerateDepopForMixBuffersCommand(in_params.buffer_count, in_params.buffer_offset, in_params.sample_rate); GenerateEffectCommand(mix_info); for (s32 i = 0; i < in_params.buffer_count; i++) { const s32 gain = static_cast(in_params.volume * 32768.0f); if (dumping_frame) { LOG_DEBUG( Audio, "(DSP_TRACE) ApplyGainWithoutDelta node_id={}, input={}, output={}, volume={}", in_params.node_id, in_params.buffer_offset + i, in_params.buffer_offset + i, in_params.volume); } ApplyGainWithoutDelta(GetMixBuffer(in_params.buffer_offset + i), GetMixBuffer(in_params.buffer_offset + i), gain, worker_params.sample_count); } } s32 CommandGenerator::DecodePcm16(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 sample_start_offset, s32 sample_end_offset, s32 sample_count, s32 channel, std::size_t mix_offset) { const auto& in_params = voice_info.GetInParams(); const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index]; if (wave_buffer.buffer_address == 0) { return 0; } if (wave_buffer.buffer_size == 0) { return 0; } if (sample_end_offset < sample_start_offset) { return 0; } const auto samples_remaining = (sample_end_offset - sample_start_offset) - dsp_state.offset; const auto start_offset = ((dsp_state.offset + sample_start_offset) * in_params.channel_count) * sizeof(s16); const auto buffer_pos = wave_buffer.buffer_address + start_offset; const auto samples_processed = std::min(sample_count, samples_remaining); if (in_params.channel_count == 1) { std::vector buffer(samples_processed); memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(s16)); for (std::size_t i = 0; i < buffer.size(); i++) { sample_buffer[mix_offset + i] = buffer[i]; } } else { const auto channel_count = in_params.channel_count; std::vector buffer(samples_processed * channel_count); memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(s16)); for (std::size_t i = 0; i < static_cast(samples_processed); i++) { sample_buffer[mix_offset + i] = buffer[i * channel_count + channel]; } } return samples_processed; } s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 sample_start_offset, s32 sample_end_offset, s32 sample_count, [[maybe_unused]] s32 channel, std::size_t mix_offset) { const auto& in_params = voice_info.GetInParams(); const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index]; if (wave_buffer.buffer_address == 0) { return 0; } if (wave_buffer.buffer_size == 0) { return 0; } if (sample_end_offset < sample_start_offset) { return 0; } static constexpr std::array SIGNED_NIBBLES{ 0, 1, 2, 3, 4, 5, 6, 7, -8, -7, -6, -5, -4, -3, -2, -1, }; constexpr std::size_t FRAME_LEN = 8; constexpr std::size_t NIBBLES_PER_SAMPLE = 16; constexpr std::size_t SAMPLES_PER_FRAME = 14; auto frame_header = dsp_state.context.header; s32 idx = (frame_header >> 4) & 0xf; s32 scale = frame_header & 0xf; s16 yn1 = dsp_state.context.yn1; s16 yn2 = dsp_state.context.yn2; Codec::ADPCM_Coeff coeffs; memory.ReadBlock(in_params.additional_params_address, coeffs.data(), sizeof(Codec::ADPCM_Coeff)); s32 coef1 = coeffs[idx * 2]; s32 coef2 = coeffs[idx * 2 + 1]; const auto samples_remaining = (sample_end_offset - sample_start_offset) - dsp_state.offset; const auto samples_processed = std::min(sample_count, samples_remaining); const auto sample_pos = dsp_state.offset + sample_start_offset; const auto samples_remaining_in_frame = sample_pos % SAMPLES_PER_FRAME; auto position_in_frame = ((sample_pos / SAMPLES_PER_FRAME) * NIBBLES_PER_SAMPLE) + samples_remaining_in_frame + (samples_remaining_in_frame != 0 ? 2 : 0); const auto decode_sample = [&](const int nibble) -> s16 { const int xn = nibble * (1 << scale); // We first transform everything into 11 bit fixed point, perform the second order // digital filter, then transform back. // 0x400 == 0.5 in 11 bit fixed point. // Filter: y[n] = x[n] + 0.5 + c1 * y[n-1] + c2 * y[n-2] int val = ((xn << 11) + 0x400 + coef1 * yn1 + coef2 * yn2) >> 11; // Clamp to output range. val = std::clamp(val, -32768, 32767); // Advance output feedback. yn2 = yn1; yn1 = static_cast(val); return yn1; }; std::size_t buffer_offset{}; std::vector buffer( std::max((samples_processed / FRAME_LEN) * SAMPLES_PER_FRAME, FRAME_LEN)); memory.ReadBlock(wave_buffer.buffer_address + (position_in_frame / 2), buffer.data(), buffer.size()); std::size_t cur_mix_offset = mix_offset; auto remaining_samples = samples_processed; while (remaining_samples > 0) { if (position_in_frame % NIBBLES_PER_SAMPLE == 0) { // Read header frame_header = buffer[buffer_offset++]; idx = (frame_header >> 4) & 0xf; scale = frame_header & 0xf; coef1 = coeffs[idx * 2]; coef2 = coeffs[idx * 2 + 1]; position_in_frame += 2; // Decode entire frame if (remaining_samples >= static_cast(SAMPLES_PER_FRAME)) { for (std::size_t i = 0; i < SAMPLES_PER_FRAME / 2; i++) { // Sample 1 const s32 s0 = SIGNED_NIBBLES[buffer[buffer_offset] >> 4]; const s32 s1 = SIGNED_NIBBLES[buffer[buffer_offset++] & 0xf]; const s16 sample_1 = decode_sample(s0); const s16 sample_2 = decode_sample(s1); sample_buffer[cur_mix_offset++] = sample_1; sample_buffer[cur_mix_offset++] = sample_2; } remaining_samples -= static_cast(SAMPLES_PER_FRAME); position_in_frame += SAMPLES_PER_FRAME; continue; } } // Decode mid frame s32 current_nibble = buffer[buffer_offset]; if (position_in_frame++ & 0x1) { current_nibble &= 0xf; buffer_offset++; } else { current_nibble >>= 4; } const s16 sample = decode_sample(SIGNED_NIBBLES[current_nibble]); sample_buffer[cur_mix_offset++] = sample; remaining_samples--; } dsp_state.context.header = frame_header; dsp_state.context.yn1 = yn1; dsp_state.context.yn2 = yn2; return samples_processed; } s32* CommandGenerator::GetMixBuffer(std::size_t index) { return mix_buffer.data() + (index * worker_params.sample_count); } const s32* CommandGenerator::GetMixBuffer(std::size_t index) const { return mix_buffer.data() + (index * worker_params.sample_count); } std::size_t CommandGenerator::GetMixChannelBufferOffset(s32 channel) const { return worker_params.mix_buffer_count + channel; } std::size_t CommandGenerator::GetTotalMixBufferCount() const { return worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT; } s32* CommandGenerator::GetChannelMixBuffer(s32 channel) { return GetMixBuffer(worker_params.mix_buffer_count + channel); } const s32* CommandGenerator::GetChannelMixBuffer(s32 channel) const { return GetMixBuffer(worker_params.mix_buffer_count + channel); } void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* output, VoiceState& dsp_state, s32 channel, s32 target_sample_rate, s32 sample_count, s32 node_id) { const auto& in_params = voice_info.GetInParams(); if (dumping_frame) { LOG_DEBUG(Audio, "(DSP_TRACE) DecodeFromWaveBuffers, node_id={}, channel={}, " "format={}, sample_count={}, sample_rate={}, mix_id={}, splitter_id={}", node_id, channel, in_params.sample_format, sample_count, in_params.sample_rate, in_params.mix_id, in_params.splitter_info_id); } ASSERT_OR_EXECUTE(output != nullptr, { return; }); const auto resample_rate = static_cast( static_cast(in_params.sample_rate) / static_cast(target_sample_rate) * static_cast(static_cast(in_params.pitch * 32768.0f))); if (dsp_state.fraction + sample_count * resample_rate > static_cast(SCALED_MIX_BUFFER_SIZE - 4ULL)) { return; } auto min_required_samples = std::min(static_cast(SCALED_MIX_BUFFER_SIZE) - dsp_state.fraction, resample_rate); if (min_required_samples >= sample_count) { min_required_samples = sample_count; } std::size_t temp_mix_offset{}; auto samples_remaining = sample_count; while (samples_remaining > 0) { const auto samples_to_output = std::min(samples_remaining, min_required_samples); const auto samples_to_read = (samples_to_output * resample_rate + dsp_state.fraction) >> 15; if (!in_params.behavior_flags.is_pitch_and_src_skipped) { // Append sample histtory for resampler for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) { sample_buffer[temp_mix_offset + i] = dsp_state.sample_history[i]; } temp_mix_offset += 4; } s32 samples_read{}; while (samples_read < samples_to_read) { const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index]; // No more data can be read if (!dsp_state.is_wave_buffer_valid[dsp_state.wave_buffer_index]) { break; } if (in_params.sample_format == SampleFormat::Adpcm && dsp_state.offset == 0 && wave_buffer.context_address != 0 && wave_buffer.context_size != 0) { memory.ReadBlock(wave_buffer.context_address, &dsp_state.context, sizeof(ADPCMContext)); } s32 samples_offset_start; s32 samples_offset_end; if (dsp_state.loop_count > 0 && wave_buffer.loop_start_sample != 0 && wave_buffer.loop_end_sample != 0 && wave_buffer.loop_start_sample <= wave_buffer.loop_end_sample) { samples_offset_start = wave_buffer.loop_start_sample; samples_offset_end = wave_buffer.loop_end_sample; } else { samples_offset_start = wave_buffer.start_sample_offset; samples_offset_end = wave_buffer.end_sample_offset; } s32 samples_decoded{0}; switch (in_params.sample_format) { case SampleFormat::Pcm16: samples_decoded = DecodePcm16(voice_info, dsp_state, samples_offset_start, samples_offset_end, samples_to_read - samples_read, channel, temp_mix_offset); break; case SampleFormat::Adpcm: samples_decoded = DecodeAdpcm(voice_info, dsp_state, samples_offset_start, samples_offset_end, samples_to_read - samples_read, channel, temp_mix_offset); break; default: UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format); } temp_mix_offset += samples_decoded; samples_read += samples_decoded; dsp_state.offset += samples_decoded; dsp_state.played_sample_count += samples_decoded; if (dsp_state.offset >= (samples_offset_end - samples_offset_start) || samples_decoded == 0) { // Reset our sample offset dsp_state.offset = 0; if (wave_buffer.is_looping) { dsp_state.loop_count++; if (wave_buffer.loop_count > 0 && (dsp_state.loop_count > wave_buffer.loop_count || samples_decoded == 0)) { // End of our buffer voice_info.SetWaveBufferCompleted(dsp_state, wave_buffer); } if (samples_decoded == 0) { break; } if (in_params.behavior_flags.is_played_samples_reset_at_loop_point.Value()) { dsp_state.played_sample_count = 0; } } else { // Update our wave buffer states voice_info.SetWaveBufferCompleted(dsp_state, wave_buffer); } } } if (in_params.behavior_flags.is_pitch_and_src_skipped.Value()) { // No need to resample std::memcpy(output, sample_buffer.data(), samples_read * sizeof(s32)); } else { std::fill(sample_buffer.begin() + temp_mix_offset, sample_buffer.begin() + temp_mix_offset + (samples_to_read - samples_read), 0); AudioCore::Resample(output, sample_buffer.data(), resample_rate, dsp_state.fraction, samples_to_output); // Resample for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) { dsp_state.sample_history[i] = sample_buffer[samples_to_read + i]; } } output += samples_to_output; samples_remaining -= samples_to_output; } } } // namespace AudioCore