// Copyright 2018 yuzu Emulator Project // Licensed under GPLv2 or any later version // Refer to the license.txt file included. #include "audio_core/algorithm/interpolate.h" #include "audio_core/audio_out.h" #include "audio_core/audio_renderer.h" #include "audio_core/codec.h" #include "common/assert.h" #include "common/logging/log.h" #include "core/core.h" #include "core/hle/kernel/writable_event.h" #include "core/memory.h" namespace AudioCore { constexpr u32 STREAM_SAMPLE_RATE{48000}; constexpr u32 STREAM_NUM_CHANNELS{2}; class AudioRenderer::VoiceState { public: bool IsPlaying() const { return is_in_use && info.play_state == PlayState::Started; } const VoiceOutStatus& GetOutStatus() const { return out_status; } const VoiceInfo& GetInfo() const { return info; } VoiceInfo& GetInfo() { return info; } void SetWaveIndex(std::size_t index); std::vector DequeueSamples(std::size_t sample_count); void UpdateState(); void RefreshBuffer(); private: bool is_in_use{}; bool is_refresh_pending{}; std::size_t wave_index{}; std::size_t offset{}; Codec::ADPCMState adpcm_state{}; InterpolationState interp_state{}; std::vector samples; VoiceOutStatus out_status{}; VoiceInfo info{}; }; class AudioRenderer::EffectState { public: const EffectOutStatus& GetOutStatus() const { return out_status; } const EffectInStatus& GetInfo() const { return info; } EffectInStatus& GetInfo() { return info; } void UpdateState(); private: EffectOutStatus out_status{}; EffectInStatus info{}; }; AudioRenderer::AudioRenderer(Core::Timing::CoreTiming& core_timing, AudioRendererParameter params, Kernel::SharedPtr buffer_event, std::size_t instance_number) : worker_params{params}, buffer_event{buffer_event}, voices(params.voice_count), effects(params.effect_count) { audio_out = std::make_unique(); stream = audio_out->OpenStream(core_timing, STREAM_SAMPLE_RATE, STREAM_NUM_CHANNELS, fmt::format("AudioRenderer-Instance{}", instance_number), [=]() { buffer_event->Signal(); }); audio_out->StartStream(stream); QueueMixedBuffer(0); QueueMixedBuffer(1); QueueMixedBuffer(2); } AudioRenderer::~AudioRenderer() = default; u32 AudioRenderer::GetSampleRate() const { return worker_params.sample_rate; } u32 AudioRenderer::GetSampleCount() const { return worker_params.sample_count; } u32 AudioRenderer::GetMixBufferCount() const { return worker_params.mix_buffer_count; } Stream::State AudioRenderer::GetStreamState() const { return stream->GetState(); } std::vector AudioRenderer::UpdateAudioRenderer(const std::vector& input_params) { // Copy UpdateDataHeader struct UpdateDataHeader config{}; std::memcpy(&config, input_params.data(), sizeof(UpdateDataHeader)); u32 memory_pool_count = worker_params.effect_count + (worker_params.voice_count * 4); // Copy MemoryPoolInfo structs std::vector mem_pool_info(memory_pool_count); std::memcpy(mem_pool_info.data(), input_params.data() + sizeof(UpdateDataHeader) + config.behavior_size, memory_pool_count * sizeof(MemoryPoolInfo)); // Copy VoiceInfo structs std::size_t voice_offset{sizeof(UpdateDataHeader) + config.behavior_size + config.memory_pools_size + config.voice_resource_size}; for (auto& voice : voices) { std::memcpy(&voice.GetInfo(), input_params.data() + voice_offset, sizeof(VoiceInfo)); voice_offset += sizeof(VoiceInfo); } std::size_t effect_offset{sizeof(UpdateDataHeader) + config.behavior_size + config.memory_pools_size + config.voice_resource_size + config.voices_size}; for (auto& effect : effects) { std::memcpy(&effect.GetInfo(), input_params.data() + effect_offset, sizeof(EffectInStatus)); effect_offset += sizeof(EffectInStatus); } // Update memory pool state std::vector memory_pool(memory_pool_count); for (std::size_t index = 0; index < memory_pool.size(); ++index) { if (mem_pool_info[index].pool_state == MemoryPoolStates::RequestAttach) { memory_pool[index].state = MemoryPoolStates::Attached; } else if (mem_pool_info[index].pool_state == MemoryPoolStates::RequestDetach) { memory_pool[index].state = MemoryPoolStates::Detached; } } // Update voices for (auto& voice : voices) { voice.UpdateState(); if (!voice.GetInfo().is_in_use) { continue; } if (voice.GetInfo().is_new) { voice.SetWaveIndex(voice.GetInfo().wave_buffer_head); } } for (auto& effect : effects) { effect.UpdateState(); } // Release previous buffers and queue next ones for playback ReleaseAndQueueBuffers(); // Copy output header UpdateDataHeader response_data{worker_params}; std::vector output_params(response_data.total_size); std::memcpy(output_params.data(), &response_data, sizeof(UpdateDataHeader)); // Copy output memory pool entries std::memcpy(output_params.data() + sizeof(UpdateDataHeader), memory_pool.data(), response_data.memory_pools_size); // Copy output voice status std::size_t voice_out_status_offset{sizeof(UpdateDataHeader) + response_data.memory_pools_size}; for (const auto& voice : voices) { std::memcpy(output_params.data() + voice_out_status_offset, &voice.GetOutStatus(), sizeof(VoiceOutStatus)); voice_out_status_offset += sizeof(VoiceOutStatus); } std::size_t effect_out_status_offset{ sizeof(UpdateDataHeader) + response_data.memory_pools_size + response_data.voices_size + response_data.voice_resource_size}; for (const auto& effect : effects) { std::memcpy(output_params.data() + effect_out_status_offset, &effect.GetOutStatus(), sizeof(EffectOutStatus)); effect_out_status_offset += sizeof(EffectOutStatus); } return output_params; } void AudioRenderer::VoiceState::SetWaveIndex(std::size_t index) { wave_index = index & 3; is_refresh_pending = true; } std::vector AudioRenderer::VoiceState::DequeueSamples(std::size_t sample_count) { if (!IsPlaying()) { return {}; } if (is_refresh_pending) { RefreshBuffer(); } const std::size_t max_size{samples.size() - offset}; const std::size_t dequeue_offset{offset}; std::size_t size{sample_count * STREAM_NUM_CHANNELS}; if (size > max_size) { size = max_size; } out_status.played_sample_count += size / STREAM_NUM_CHANNELS; offset += size; const auto& wave_buffer{info.wave_buffer[wave_index]}; if (offset == samples.size()) { offset = 0; if (!wave_buffer.is_looping && wave_buffer.buffer_sz) { SetWaveIndex(wave_index + 1); } if (wave_buffer.buffer_sz) { out_status.wave_buffer_consumed++; } if (wave_buffer.end_of_stream || wave_buffer.buffer_sz == 0) { info.play_state = PlayState::Paused; } } return {samples.begin() + dequeue_offset, samples.begin() + dequeue_offset + size}; } void AudioRenderer::VoiceState::UpdateState() { if (is_in_use && !info.is_in_use) { // No longer in use, reset state is_refresh_pending = true; wave_index = 0; offset = 0; out_status = {}; } is_in_use = info.is_in_use; } void AudioRenderer::VoiceState::RefreshBuffer() { std::vector new_samples(info.wave_buffer[wave_index].buffer_sz / sizeof(s16)); Memory::ReadBlock(info.wave_buffer[wave_index].buffer_addr, new_samples.data(), info.wave_buffer[wave_index].buffer_sz); switch (static_cast(info.sample_format)) { case Codec::PcmFormat::Int16: { // PCM16 is played as-is break; } case Codec::PcmFormat::Adpcm: { // Decode ADPCM to PCM16 Codec::ADPCM_Coeff coeffs; Memory::ReadBlock(info.additional_params_addr, coeffs.data(), sizeof(Codec::ADPCM_Coeff)); new_samples = Codec::DecodeADPCM(reinterpret_cast(new_samples.data()), new_samples.size() * sizeof(s16), coeffs, adpcm_state); break; } default: UNIMPLEMENTED_MSG("Unimplemented sample_format={}", info.sample_format); break; } switch (info.channel_count) { case 1: // 1 channel is upsampled to 2 channel samples.resize(new_samples.size() * 2); for (std::size_t index = 0; index < new_samples.size(); ++index) { samples[index * 2] = new_samples[index]; samples[index * 2 + 1] = new_samples[index]; } break; case 2: { // 2 channel is played as is samples = std::move(new_samples); break; } default: UNIMPLEMENTED_MSG("Unimplemented channel_count={}", info.channel_count); break; } // Only interpolate when necessary, expensive. if (GetInfo().sample_rate != STREAM_SAMPLE_RATE) { samples = Interpolate(interp_state, std::move(samples), GetInfo().sample_rate, STREAM_SAMPLE_RATE); } is_refresh_pending = false; } void AudioRenderer::EffectState::UpdateState() { if (info.is_new) { out_status.state = EffectStatus::New; } else { if (info.type == Effect::Aux) { ASSERT_MSG(Memory::Read32(info.aux_info.return_buffer_info) == 0, "Aux buffers tried to update"); ASSERT_MSG(Memory::Read32(info.aux_info.send_buffer_info) == 0, "Aux buffers tried to update"); ASSERT_MSG(Memory::Read32(info.aux_info.return_buffer_base) == 0, "Aux buffers tried to update"); ASSERT_MSG(Memory::Read32(info.aux_info.send_buffer_base) == 0, "Aux buffers tried to update"); } } } static constexpr s16 ClampToS16(s32 value) { return static_cast(std::clamp(value, -32768, 32767)); } void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) { constexpr std::size_t BUFFER_SIZE{512}; std::vector buffer(BUFFER_SIZE * stream->GetNumChannels()); for (auto& voice : voices) { if (!voice.IsPlaying()) { continue; } std::size_t offset{}; s64 samples_remaining{BUFFER_SIZE}; while (samples_remaining > 0) { const std::vector samples{voice.DequeueSamples(samples_remaining)}; if (samples.empty()) { break; } samples_remaining -= samples.size() / stream->GetNumChannels(); for (const auto& sample : samples) { const s32 buffer_sample{buffer[offset]}; buffer[offset++] = ClampToS16(buffer_sample + static_cast(sample * voice.GetInfo().volume)); } } } audio_out->QueueBuffer(stream, tag, std::move(buffer)); } void AudioRenderer::ReleaseAndQueueBuffers() { const auto released_buffers{audio_out->GetTagsAndReleaseBuffers(stream, 2)}; for (const auto& tag : released_buffers) { QueueMixedBuffer(tag); } } } // namespace AudioCore