From b172f0d770486d4367fbea22906a5e908ef621e8 Mon Sep 17 00:00:00 2001 From: bunnei Date: Tue, 2 Jan 2018 22:24:12 -0500 Subject: arm: Remove SkyEye/Dyncom code that is ARMv6-only. --- src/core/arm/skyeye_common/vfp/vfpsingle.cpp | 1272 -------------------------- 1 file changed, 1272 deletions(-) delete mode 100644 src/core/arm/skyeye_common/vfp/vfpsingle.cpp (limited to 'src/core/arm/skyeye_common/vfp/vfpsingle.cpp') diff --git a/src/core/arm/skyeye_common/vfp/vfpsingle.cpp b/src/core/arm/skyeye_common/vfp/vfpsingle.cpp deleted file mode 100644 index 108f03aa9..000000000 --- a/src/core/arm/skyeye_common/vfp/vfpsingle.cpp +++ /dev/null @@ -1,1272 +0,0 @@ -/* - vfp/vfpsingle.c - ARM VFPv3 emulation unit - SoftFloat single instruction - Copyright (C) 2003 Skyeye Develop Group - for help please send mail to - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -*/ - -/* - * This code is derived in part from : - * - Android kernel - * - John R. Housers softfloat library, which - * carries the following notice: - * - * =========================================================================== - * This C source file is part of the SoftFloat IEC/IEEE Floating-point - * Arithmetic Package, Release 2. - * - * Written by John R. Hauser. This work was made possible in part by the - * International Computer Science Institute, located at Suite 600, 1947 Center - * Street, Berkeley, California 94704. Funding was partially provided by the - * National Science Foundation under grant MIP-9311980. The original version - * of this code was written as part of a project to build a fixed-point vector - * processor in collaboration with the University of California at Berkeley, - * overseen by Profs. Nelson Morgan and John Wawrzynek. More information - * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ - * arithmetic/softfloat.html'. - * - * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort - * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT - * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO - * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY - * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - * - * Derivative works are acceptable, even for commercial purposes, so long as - * (1) they include prominent notice that the work is derivative, and (2) they - * include prominent notice akin to these three paragraphs for those parts of - * this code that are retained. - * =========================================================================== - */ - -#include -#include -#include "common/common_funcs.h" -#include "common/common_types.h" -#include "common/logging/log.h" -#include "core/arm/skyeye_common/vfp/asm_vfp.h" -#include "core/arm/skyeye_common/vfp/vfp.h" -#include "core/arm/skyeye_common/vfp/vfp_helper.h" - -static struct vfp_single vfp_single_default_qnan = { - 255, 0, VFP_SINGLE_SIGNIFICAND_QNAN, -}; - -static void vfp_single_dump(const char* str, struct vfp_single* s) { - LOG_TRACE(Core_ARM, "%s: sign=%d exponent=%d significand=%08x", str, s->sign != 0, - s->exponent, s->significand); -} - -static void vfp_single_normalise_denormal(struct vfp_single* vs) { - int bits = 31 - fls(vs->significand); - - vfp_single_dump("normalise_denormal: in", vs); - - if (bits) { - vs->exponent -= bits - 1; - vs->significand <<= bits; - } - - vfp_single_dump("normalise_denormal: out", vs); -} - -u32 vfp_single_normaliseround(ARMul_State* state, int sd, struct vfp_single* vs, u32 fpscr, - u32 exceptions, const char* func) { - u32 significand, incr, rmode; - int exponent, shift, underflow; - - vfp_single_dump("pack: in", vs); - - /* - * Infinities and NaNs are a special case. - */ - if (vs->exponent == 255 && (vs->significand == 0 || exceptions)) - goto pack; - - /* - * Special-case zero. - */ - if (vs->significand == 0) { - vs->exponent = 0; - goto pack; - } - - exponent = vs->exponent; - significand = vs->significand; - - /* - * Normalise first. Note that we shift the significand up to - * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least - * significant bit. - */ - shift = 32 - fls(significand); - if (shift < 32 && shift) { - exponent -= shift; - significand <<= shift; - } - -#if 1 - vs->exponent = exponent; - vs->significand = significand; - vfp_single_dump("pack: normalised", vs); -#endif - - /* - * Tiny number? - */ - underflow = exponent < 0; - if (underflow) { - significand = vfp_shiftright32jamming(significand, -exponent); - exponent = 0; -#if 1 - vs->exponent = exponent; - vs->significand = significand; - vfp_single_dump("pack: tiny number", vs); -#endif - if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))) - underflow = 0; - - int type = vfp_single_type(vs); - - if ((type & VFP_DENORMAL) && (fpscr & FPSCR_FLUSH_TO_ZERO)) { - // Flush denormal to positive 0 - significand = 0; - - vs->sign = 0; - vs->significand = significand; - - underflow = 0; - exceptions |= FPSCR_UFC; - } - } - - /* - * Select rounding increment. - */ - incr = 0; - rmode = fpscr & FPSCR_RMODE_MASK; - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 1 << VFP_SINGLE_LOW_BITS; - if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0)) - incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1; - - LOG_TRACE(Core_ARM, "rounding increment = 0x%08x", incr); - - /* - * Is our rounding going to overflow? - */ - if ((significand + incr) < significand) { - exponent += 1; - significand = (significand >> 1) | (significand & 1); - incr >>= 1; -#if 1 - vs->exponent = exponent; - vs->significand = significand; - vfp_single_dump("pack: overflow", vs); -#endif - } - - /* - * If any of the low bits (which will be shifted out of the - * number) are non-zero, the result is inexact. - */ - if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)) - exceptions |= FPSCR_IXC; - - /* - * Do our rounding. - */ - significand += incr; - - /* - * Infinity? - */ - if (exponent >= 254) { - exceptions |= FPSCR_OFC | FPSCR_IXC; - if (incr == 0) { - vs->exponent = 253; - vs->significand = 0x7fffffff; - } else { - vs->exponent = 255; /* infinity */ - vs->significand = 0; - } - } else { - if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0) - exponent = 0; - if (exponent || significand > 0x80000000) - underflow = 0; - if (underflow) - exceptions |= FPSCR_UFC; - vs->exponent = exponent; - vs->significand = significand >> 1; - } - -pack: - vfp_single_dump("pack: final", vs); - { - s32 d = vfp_single_pack(vs); - LOG_TRACE(Core_ARM, "%s: d(s%d)=%08x exceptions=%08x", func, sd, d, exceptions); - vfp_put_float(state, d, sd); - } - - return exceptions; -} - -/* - * Propagate the NaN, setting exceptions if it is signalling. - * 'n' is always a NaN. 'm' may be a number, NaN or infinity. - */ -static u32 vfp_propagate_nan(struct vfp_single* vsd, struct vfp_single* vsn, struct vfp_single* vsm, - u32 fpscr) { - struct vfp_single* nan; - int tn, tm = 0; - - tn = vfp_single_type(vsn); - - if (vsm) - tm = vfp_single_type(vsm); - - if (fpscr & FPSCR_DEFAULT_NAN) - /* - * Default NaN mode - always returns a quiet NaN - */ - nan = &vfp_single_default_qnan; - else { - /* - * Contemporary mode - select the first signalling - * NAN, or if neither are signalling, the first - * quiet NAN. - */ - if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) - nan = vsn; - else - nan = vsm; - /* - * Make the NaN quiet. - */ - nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN; - } - - *vsd = *nan; - - /* - * If one was a signalling NAN, raise invalid operation. - */ - return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; -} - -/* - * Extended operations - */ -static u32 vfp_single_fabs(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - vfp_put_float(state, vfp_single_packed_abs(m), sd); - return 0; -} - -static u32 vfp_single_fcpy(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - vfp_put_float(state, m, sd); - return 0; -} - -static u32 vfp_single_fneg(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - vfp_put_float(state, vfp_single_packed_negate(m), sd); - return 0; -} - -static const u16 sqrt_oddadjust[] = { - 0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0, - 0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67, -}; - -static const u16 sqrt_evenadjust[] = { - 0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e, - 0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002, -}; - -u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand) { - int index; - u32 z, a; - - if ((significand & 0xc0000000) != 0x40000000) { - LOG_TRACE(Core_ARM, "invalid significand"); - } - - a = significand << 1; - index = (a >> 27) & 15; - if (exponent & 1) { - z = 0x4000 + (a >> 17) - sqrt_oddadjust[index]; - z = ((a / z) << 14) + (z << 15); - a >>= 1; - } else { - z = 0x8000 + (a >> 17) - sqrt_evenadjust[index]; - z = a / z + z; - z = (z >= 0x20000) ? 0xffff8000 : (z << 15); - if (z <= a) - return (s32)a >> 1; - } - { - u64 v = (u64)a << 31; - do_div(v, z); - return (u32)(v + (z >> 1)); - } -} - -static u32 vfp_single_fsqrt(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - struct vfp_single vsm, vsd, *vsp; - int ret, tm; - u32 exceptions = 0; - - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - tm = vfp_single_type(&vsm); - if (tm & (VFP_NAN | VFP_INFINITY)) { - vsp = &vsd; - - if (tm & VFP_NAN) - ret = vfp_propagate_nan(vsp, &vsm, nullptr, fpscr); - else if (vsm.sign == 0) { - sqrt_copy: - vsp = &vsm; - ret = 0; - } else { - sqrt_invalid: - vsp = &vfp_single_default_qnan; - ret = FPSCR_IOC; - } - vfp_put_float(state, vfp_single_pack(vsp), sd); - return ret; - } - - /* - * sqrt(+/- 0) == +/- 0 - */ - if (tm & VFP_ZERO) - goto sqrt_copy; - - /* - * Normalise a denormalised number - */ - if (tm & VFP_DENORMAL) - vfp_single_normalise_denormal(&vsm); - - /* - * sqrt(<0) = invalid - */ - if (vsm.sign) - goto sqrt_invalid; - - vfp_single_dump("sqrt", &vsm); - - /* - * Estimate the square root. - */ - vsd.sign = 0; - vsd.exponent = ((vsm.exponent - 127) >> 1) + 127; - vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2; - - vfp_single_dump("sqrt estimate", &vsd); - - /* - * And now adjust. - */ - if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) { - if (vsd.significand < 2) { - vsd.significand = 0xffffffff; - } else { - u64 term; - s64 rem; - vsm.significand <<= static_cast((vsm.exponent & 1) == 0); - term = (u64)vsd.significand * vsd.significand; - rem = ((u64)vsm.significand << 32) - term; - - LOG_TRACE(Core_ARM, "term=%016" PRIx64 "rem=%016" PRIx64, term, rem); - - while (rem < 0) { - vsd.significand -= 1; - rem += ((u64)vsd.significand << 1) | 1; - } - vsd.significand |= rem != 0; - } - } - vsd.significand = vfp_shiftright32jamming(vsd.significand, 1); - - exceptions |= vfp_single_normaliseround(state, sd, &vsd, fpscr, 0, "fsqrt"); - - return exceptions; -} - -/* - * Equal := ZC - * Less than := N - * Greater than := C - * Unordered := CV - */ -static u32 vfp_compare(ARMul_State* state, int sd, int signal_on_qnan, s32 m, u32 fpscr) { - s32 d; - u32 ret = 0; - - d = vfp_get_float(state, sd); - if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) { - ret |= FPSCR_CFLAG | FPSCR_VFLAG; - if (signal_on_qnan || - !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) - /* - * Signalling NaN, or signalling on quiet NaN - */ - ret |= FPSCR_IOC; - } - - if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) { - ret |= FPSCR_CFLAG | FPSCR_VFLAG; - if (signal_on_qnan || - !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1)))) - /* - * Signalling NaN, or signalling on quiet NaN - */ - ret |= FPSCR_IOC; - } - - if (ret == 0) { - if (d == m || vfp_single_packed_abs(d | m) == 0) { - /* - * equal - */ - ret |= FPSCR_ZFLAG | FPSCR_CFLAG; - } else if (vfp_single_packed_sign(d ^ m)) { - /* - * different signs - */ - if (vfp_single_packed_sign(d)) - /* - * d is negative, so d < m - */ - ret |= FPSCR_NFLAG; - else - /* - * d is positive, so d > m - */ - ret |= FPSCR_CFLAG; - } else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) { - /* - * d < m - */ - ret |= FPSCR_NFLAG; - } else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) { - /* - * d > m - */ - ret |= FPSCR_CFLAG; - } - } - return ret; -} - -static u32 vfp_single_fcmp(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - return vfp_compare(state, sd, 0, m, fpscr); -} - -static u32 vfp_single_fcmpe(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - return vfp_compare(state, sd, 1, m, fpscr); -} - -static u32 vfp_single_fcmpz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - return vfp_compare(state, sd, 0, 0, fpscr); -} - -static u32 vfp_single_fcmpez(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - return vfp_compare(state, sd, 1, 0, fpscr); -} - -static u32 vfp_single_fcvtd(ARMul_State* state, int dd, int unused, s32 m, u32 fpscr) { - struct vfp_single vsm; - struct vfp_double vdd; - int tm; - u32 exceptions = 0; - - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - - tm = vfp_single_type(&vsm); - - /* - * If we have a signalling NaN, signal invalid operation. - */ - if (tm == VFP_SNAN) - exceptions |= FPSCR_IOC; - - if (tm & VFP_DENORMAL) - vfp_single_normalise_denormal(&vsm); - - vdd.sign = vsm.sign; - vdd.significand = (u64)vsm.significand << 32; - - /* - * If we have an infinity or NaN, the exponent must be 2047. - */ - if (tm & (VFP_INFINITY | VFP_NAN)) { - vdd.exponent = 2047; - if (tm == VFP_QNAN) - vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; - goto pack_nan; - } else if (tm & VFP_ZERO) - vdd.exponent = 0; - else - vdd.exponent = vsm.exponent + (1023 - 127); - - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fcvtd"); - -pack_nan: - vfp_put_double(state, vfp_double_pack(&vdd), dd); - return exceptions; -} - -static u32 vfp_single_fuito(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - struct vfp_single vs; - - vs.sign = 0; - vs.exponent = 127 + 31 - 1; - vs.significand = (u32)m; - - return vfp_single_normaliseround(state, sd, &vs, fpscr, 0, "fuito"); -} - -static u32 vfp_single_fsito(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - struct vfp_single vs; - - vs.sign = (m & 0x80000000) >> 16; - vs.exponent = 127 + 31 - 1; - vs.significand = vs.sign ? -m : m; - - return vfp_single_normaliseround(state, sd, &vs, fpscr, 0, "fsito"); -} - -static u32 vfp_single_ftoui(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - struct vfp_single vsm; - u32 d, exceptions = 0; - int rmode = fpscr & FPSCR_RMODE_MASK; - int tm; - - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - vfp_single_dump("VSM", &vsm); - - /* - * Do we have a denormalised number? - */ - tm = vfp_single_type(&vsm); - if (tm & VFP_DENORMAL) - exceptions |= FPSCR_IDC; - - if (tm & VFP_NAN) - vsm.sign = 1; - - if (vsm.exponent >= 127 + 32) { - d = vsm.sign ? 0 : 0xffffffff; - exceptions |= FPSCR_IOC; - } else if (vsm.exponent >= 127) { - int shift = 127 + 31 - vsm.exponent; - u32 rem, incr = 0; - - /* - * 2^0 <= m < 2^32-2^8 - */ - d = (vsm.significand << 1) >> shift; - if (shift > 0) { - rem = (vsm.significand << 1) << (32 - shift); - } else { - rem = 0; - } - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 0x80000000; - if ((d & 1) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { - incr = ~0; - } - - if ((rem + incr) < rem) { - if (d < 0xffffffff) - d += 1; - else - exceptions |= FPSCR_IOC; - } - - if (d && vsm.sign) { - d = 0; - exceptions |= FPSCR_IOC; - } else if (rem) - exceptions |= FPSCR_IXC; - } else { - d = 0; - if (vsm.exponent | vsm.significand) { - if (rmode == FPSCR_ROUND_NEAREST) { - if (vsm.exponent >= 126) { - d = vsm.sign ? 0 : 1; - exceptions |= vsm.sign ? FPSCR_IOC : FPSCR_IXC; - } else { - exceptions |= FPSCR_IXC; - } - } else if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) { - d = 1; - exceptions |= FPSCR_IXC; - } else if (rmode == FPSCR_ROUND_MINUSINF) { - exceptions |= vsm.sign ? FPSCR_IOC : FPSCR_IXC; - } else { - exceptions |= FPSCR_IXC; - } - } - } - - LOG_TRACE(Core_ARM, "ftoui: d(s%d)=%08x exceptions=%08x", sd, d, exceptions); - - vfp_put_float(state, d, sd); - - return exceptions; -} - -static u32 vfp_single_ftouiz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - return vfp_single_ftoui(state, sd, unused, m, (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO); -} - -static u32 vfp_single_ftosi(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - struct vfp_single vsm; - u32 d, exceptions = 0; - int rmode = fpscr & FPSCR_RMODE_MASK; - int tm; - - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - vfp_single_dump("VSM", &vsm); - - /* - * Do we have a denormalised number? - */ - tm = vfp_single_type(&vsm); - if (vfp_single_type(&vsm) & VFP_DENORMAL) - exceptions |= FPSCR_IDC; - - if (tm & VFP_NAN) { - d = 0; - exceptions |= FPSCR_IOC; - } else if (vsm.exponent >= 127 + 31) { - /* - * m >= 2^31-2^7: invalid - */ - d = 0x7fffffff; - if (vsm.sign) - d = ~d; - exceptions |= FPSCR_IOC; - } else if (vsm.exponent >= 127) { - int shift = 127 + 31 - vsm.exponent; - u32 rem, incr = 0; - - /* 2^0 <= m <= 2^31-2^7 */ - d = (vsm.significand << 1) >> shift; - rem = (vsm.significand << 1) << (32 - shift); - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 0x80000000; - if ((d & 1) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) { - incr = ~0; - } - - if ((rem + incr) < rem && d < 0xffffffff) - d += 1; - if (d > (0x7fffffffu + (vsm.sign != 0))) { - d = (0x7fffffffu + (vsm.sign != 0)); - exceptions |= FPSCR_IOC; - } else if (rem) - exceptions |= FPSCR_IXC; - - if (vsm.sign) - d = (~d + 1); - } else { - d = 0; - if (vsm.exponent | vsm.significand) { - exceptions |= FPSCR_IXC; - if (rmode == FPSCR_ROUND_NEAREST) { - if (vsm.exponent >= 126) - d = vsm.sign ? 0xffffffff : 1; - } else if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0) { - d = 1; - } else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) { - d = 0xffffffff; - } - } - } - - LOG_TRACE(Core_ARM, "ftosi: d(s%d)=%08x exceptions=%08x", sd, d, exceptions); - - vfp_put_float(state, (s32)d, sd); - - return exceptions; -} - -static u32 vfp_single_ftosiz(ARMul_State* state, int sd, int unused, s32 m, u32 fpscr) { - return vfp_single_ftosi(state, sd, unused, m, (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO); -} - -static struct op fops_ext[] = { - {vfp_single_fcpy, 0}, // 0x00000000 - FEXT_FCPY - {vfp_single_fabs, 0}, // 0x00000001 - FEXT_FABS - {vfp_single_fneg, 0}, // 0x00000002 - FEXT_FNEG - {vfp_single_fsqrt, 0}, // 0x00000003 - FEXT_FSQRT - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {vfp_single_fcmp, OP_SCALAR}, // 0x00000008 - FEXT_FCMP - {vfp_single_fcmpe, OP_SCALAR}, // 0x00000009 - FEXT_FCMPE - {vfp_single_fcmpz, OP_SCALAR}, // 0x0000000A - FEXT_FCMPZ - {vfp_single_fcmpez, OP_SCALAR}, // 0x0000000B - FEXT_FCMPEZ - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {vfp_single_fcvtd, OP_SCALAR | OP_DD}, // 0x0000000F - FEXT_FCVT - {vfp_single_fuito, OP_SCALAR}, // 0x00000010 - FEXT_FUITO - {vfp_single_fsito, OP_SCALAR}, // 0x00000011 - FEXT_FSITO - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {vfp_single_ftoui, OP_SCALAR}, // 0x00000018 - FEXT_FTOUI - {vfp_single_ftouiz, OP_SCALAR}, // 0x00000019 - FEXT_FTOUIZ - {vfp_single_ftosi, OP_SCALAR}, // 0x0000001A - FEXT_FTOSI - {vfp_single_ftosiz, OP_SCALAR}, // 0x0000001B - FEXT_FTOSIZ -}; - -static u32 vfp_single_fadd_nonnumber(struct vfp_single* vsd, struct vfp_single* vsn, - struct vfp_single* vsm, u32 fpscr) { - struct vfp_single* vsp; - u32 exceptions = 0; - int tn, tm; - - tn = vfp_single_type(vsn); - tm = vfp_single_type(vsm); - - if (tn & tm & VFP_INFINITY) { - /* - * Two infinities. Are they different signs? - */ - if (vsn->sign ^ vsm->sign) { - /* - * different signs -> invalid - */ - exceptions |= FPSCR_IOC; - vsp = &vfp_single_default_qnan; - } else { - /* - * same signs -> valid - */ - vsp = vsn; - } - } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { - /* - * One infinity and one number -> infinity - */ - vsp = vsn; - } else { - /* - * 'n' is a NaN of some type - */ - return vfp_propagate_nan(vsd, vsn, vsm, fpscr); - } - *vsd = *vsp; - return exceptions; -} - -static u32 vfp_single_add(struct vfp_single* vsd, struct vfp_single* vsn, struct vfp_single* vsm, - u32 fpscr) { - u32 exp_diff, m_sig; - - if (vsn->significand & 0x80000000 || vsm->significand & 0x80000000) { - LOG_WARNING(Core_ARM, "bad FP values"); - vfp_single_dump("VSN", vsn); - vfp_single_dump("VSM", vsm); - } - - /* - * Ensure that 'n' is the largest magnitude number. Note that - * if 'n' and 'm' have equal exponents, we do not swap them. - * This ensures that NaN propagation works correctly. - */ - if (vsn->exponent < vsm->exponent) { - std::swap(vsm, vsn); - } - - /* - * Is 'n' an infinity or a NaN? Note that 'm' may be a number, - * infinity or a NaN here. - */ - if (vsn->exponent == 255) - return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr); - - /* - * We have two proper numbers, where 'vsn' is the larger magnitude. - * - * Copy 'n' to 'd' before doing the arithmetic. - */ - *vsd = *vsn; - - /* - * Align both numbers. - */ - exp_diff = vsn->exponent - vsm->exponent; - m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff); - - /* - * If the signs are different, we are really subtracting. - */ - if (vsn->sign ^ vsm->sign) { - m_sig = vsn->significand - m_sig; - if ((s32)m_sig < 0) { - vsd->sign = vfp_sign_negate(vsd->sign); - m_sig = (~m_sig + 1); - } else if (m_sig == 0) { - vsd->sign = (fpscr & FPSCR_RMODE_MASK) == FPSCR_ROUND_MINUSINF ? 0x8000 : 0; - } - } else { - m_sig = vsn->significand + m_sig; - } - vsd->significand = m_sig; - - return 0; -} - -static u32 vfp_single_multiply(struct vfp_single* vsd, struct vfp_single* vsn, - struct vfp_single* vsm, u32 fpscr) { - vfp_single_dump("VSN", vsn); - vfp_single_dump("VSM", vsm); - - /* - * Ensure that 'n' is the largest magnitude number. Note that - * if 'n' and 'm' have equal exponents, we do not swap them. - * This ensures that NaN propagation works correctly. - */ - if (vsn->exponent < vsm->exponent) { - std::swap(vsm, vsn); - LOG_TRACE(Core_ARM, "swapping M <-> N"); - } - - vsd->sign = vsn->sign ^ vsm->sign; - - /* - * If 'n' is an infinity or NaN, handle it. 'm' may be anything. - */ - if (vsn->exponent == 255) { - if (vsn->significand || (vsm->exponent == 255 && vsm->significand)) - return vfp_propagate_nan(vsd, vsn, vsm, fpscr); - if ((vsm->exponent | vsm->significand) == 0) { - *vsd = vfp_single_default_qnan; - return FPSCR_IOC; - } - vsd->exponent = vsn->exponent; - vsd->significand = 0; - return 0; - } - - /* - * If 'm' is zero, the result is always zero. In this case, - * 'n' may be zero or a number, but it doesn't matter which. - */ - if ((vsm->exponent | vsm->significand) == 0) { - vsd->exponent = 0; - vsd->significand = 0; - return 0; - } - - /* - * We add 2 to the destination exponent for the same reason as - * the addition case - though this time we have +1 from each - * input operand. - */ - vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2; - vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand); - - vfp_single_dump("VSD", vsd); - return 0; -} - -#define NEG_MULTIPLY (1 << 0) -#define NEG_SUBTRACT (1 << 1) - -static u32 vfp_single_multiply_accumulate(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr, - u32 negate, const char* func) { - vfp_single vsd, vsp, vsn, vsm; - u32 exceptions = 0; - s32 v; - - v = vfp_get_float(state, sn); - LOG_TRACE(Core_ARM, "s%u = %08x", sn, v); - exceptions |= vfp_single_unpack(&vsn, v, fpscr); - if (vsn.exponent == 0 && vsn.significand) - vfp_single_normalise_denormal(&vsn); - - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - if (vsm.exponent == 0 && vsm.significand) - vfp_single_normalise_denormal(&vsm); - - exceptions |= vfp_single_multiply(&vsp, &vsn, &vsm, fpscr); - - if (negate & NEG_MULTIPLY) - vsp.sign = vfp_sign_negate(vsp.sign); - - v = vfp_get_float(state, sd); - LOG_TRACE(Core_ARM, "s%u = %08x", sd, v); - exceptions |= vfp_single_unpack(&vsn, v, fpscr); - if (vsn.exponent == 0 && vsn.significand != 0) - vfp_single_normalise_denormal(&vsn); - - if (negate & NEG_SUBTRACT) - vsn.sign = vfp_sign_negate(vsn.sign); - - exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr); - - return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, func); -} - -/* - * Standard operations - */ - -/* - * sd = sd + (sn * sm) - */ -static u32 vfp_single_fmac(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - LOG_TRACE(Core_ARM, "s%u = %08x", sn, sd); - return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, 0, "fmac"); -} - -/* - * sd = sd - (sn * sm) - */ -static u32 vfp_single_fnmac(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - // TODO: this one has its arguments inverted, investigate. - LOG_TRACE(Core_ARM, "s%u = %08x", sd, sn); - return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac"); -} - -/* - * sd = -sd + (sn * sm) - */ -static u32 vfp_single_fmsc(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - LOG_TRACE(Core_ARM, "s%u = %08x", sn, sd); - return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc"); -} - -/* - * sd = -sd - (sn * sm) - */ -static u32 vfp_single_fnmsc(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - LOG_TRACE(Core_ARM, "s%u = %08x", sn, sd); - return vfp_single_multiply_accumulate(state, sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, - "fnmsc"); -} - -/* - * sd = sn * sm - */ -static u32 vfp_single_fmul(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - struct vfp_single vsd, vsn, vsm; - u32 exceptions = 0; - s32 n = vfp_get_float(state, sn); - - LOG_TRACE(Core_ARM, "s%u = %08x", sn, n); - - exceptions |= vfp_single_unpack(&vsn, n, fpscr); - if (vsn.exponent == 0 && vsn.significand) - vfp_single_normalise_denormal(&vsn); - - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - if (vsm.exponent == 0 && vsm.significand) - vfp_single_normalise_denormal(&vsm); - - exceptions |= vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); - return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fmul"); -} - -/* - * sd = -(sn * sm) - */ -static u32 vfp_single_fnmul(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - struct vfp_single vsd, vsn, vsm; - u32 exceptions = 0; - s32 n = vfp_get_float(state, sn); - - LOG_TRACE(Core_ARM, "s%u = %08x", sn, n); - - exceptions |= vfp_single_unpack(&vsn, n, fpscr); - if (vsn.exponent == 0 && vsn.significand) - vfp_single_normalise_denormal(&vsn); - - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - if (vsm.exponent == 0 && vsm.significand) - vfp_single_normalise_denormal(&vsm); - - exceptions |= vfp_single_multiply(&vsd, &vsn, &vsm, fpscr); - vsd.sign = vfp_sign_negate(vsd.sign); - return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fnmul"); -} - -/* - * sd = sn + sm - */ -static u32 vfp_single_fadd(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - struct vfp_single vsd, vsn, vsm; - u32 exceptions = 0; - s32 n = vfp_get_float(state, sn); - - LOG_TRACE(Core_ARM, "s%u = %08x", sn, n); - - /* - * Unpack and normalise denormals. - */ - exceptions |= vfp_single_unpack(&vsn, n, fpscr); - if (vsn.exponent == 0 && vsn.significand) - vfp_single_normalise_denormal(&vsn); - - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - if (vsm.exponent == 0 && vsm.significand) - vfp_single_normalise_denormal(&vsm); - - exceptions |= vfp_single_add(&vsd, &vsn, &vsm, fpscr); - - return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fadd"); -} - -/* - * sd = sn - sm - */ -static u32 vfp_single_fsub(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - LOG_TRACE(Core_ARM, "s%u = %08x", sn, sd); - /* - * Subtraction is addition with one sign inverted. Unpack the second operand to perform FTZ if - * necessary, we can't let fadd do this because a denormal in m might get flushed to +0 in FTZ - * mode, and the resulting sign of 0 OP +0 differs between fadd and fsub. We do not need to do - * this for n because +0 OP 0 is always +0 for both fadd and fsub. - */ - struct vfp_single vsm; - u32 exceptions = vfp_single_unpack(&vsm, m, fpscr); - if (exceptions & FPSCR_IDC) { - // The value was flushed to zero, re-pack it. - m = vfp_single_pack(&vsm); - } - - if (m != 0x7FC00000) // Only negate if m isn't NaN. - m = vfp_single_packed_negate(m); - - return vfp_single_fadd(state, sd, sn, m, fpscr) | exceptions; -} - -/* - * sd = sn / sm - */ -static u32 vfp_single_fdiv(ARMul_State* state, int sd, int sn, s32 m, u32 fpscr) { - struct vfp_single vsd, vsn, vsm; - u32 exceptions = 0; - s32 n = vfp_get_float(state, sn); - int tm, tn; - - LOG_TRACE(Core_ARM, "s%u = %08x", sn, n); - - exceptions |= vfp_single_unpack(&vsn, n, fpscr); - exceptions |= vfp_single_unpack(&vsm, m, fpscr); - - vsd.sign = vsn.sign ^ vsm.sign; - - tn = vfp_single_type(&vsn); - tm = vfp_single_type(&vsm); - - /* - * Is n a NAN? - */ - if (tn & VFP_NAN) - goto vsn_nan; - - /* - * Is m a NAN? - */ - if (tm & VFP_NAN) - goto vsm_nan; - - /* - * If n and m are infinity, the result is invalid - * If n and m are zero, the result is invalid - */ - if (tm & tn & (VFP_INFINITY | VFP_ZERO)) - goto invalid; - - /* - * If n is infinity, the result is infinity - */ - if (tn & VFP_INFINITY) - goto infinity; - - /* - * If m is zero, raise div0 exception - */ - if (tm & VFP_ZERO) - goto divzero; - - /* - * If m is infinity, or n is zero, the result is zero - */ - if (tm & VFP_INFINITY || tn & VFP_ZERO) - goto zero; - - if (tn & VFP_DENORMAL) - vfp_single_normalise_denormal(&vsn); - if (tm & VFP_DENORMAL) - vfp_single_normalise_denormal(&vsm); - - /* - * Ok, we have two numbers, we can perform division. - */ - vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1; - vsm.significand <<= 1; - if (vsm.significand <= (2 * vsn.significand)) { - vsn.significand >>= 1; - vsd.exponent++; - } - { - u64 significand = (u64)vsn.significand << 32; - do_div(significand, vsm.significand); - vsd.significand = (u32)significand; - } - if ((vsd.significand & 0x3f) == 0) - vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32); - - return vfp_single_normaliseround(state, sd, &vsd, fpscr, 0, "fdiv"); - -vsn_nan: - exceptions |= vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr); -pack: - vfp_put_float(state, vfp_single_pack(&vsd), sd); - return exceptions; - -vsm_nan: - exceptions |= vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr); - goto pack; - -zero: - vsd.exponent = 0; - vsd.significand = 0; - goto pack; - -divzero: - exceptions |= FPSCR_DZC; -infinity: - vsd.exponent = 255; - vsd.significand = 0; - goto pack; - -invalid: - vfp_put_float(state, vfp_single_pack(&vfp_single_default_qnan), sd); - return FPSCR_IOC; -} - -static struct op fops[] = { - {vfp_single_fmac, 0}, {vfp_single_fmsc, 0}, {vfp_single_fmul, 0}, - {vfp_single_fadd, 0}, {vfp_single_fnmac, 0}, {vfp_single_fnmsc, 0}, - {vfp_single_fnmul, 0}, {vfp_single_fsub, 0}, {vfp_single_fdiv, 0}, -}; - -#define FREG_BANK(x) ((x)&0x18) -#define FREG_IDX(x) ((x)&7) - -u32 vfp_single_cpdo(ARMul_State* state, u32 inst, u32 fpscr) { - u32 op = inst & FOP_MASK; - u32 exceptions = 0; - unsigned int dest; - unsigned int sn = vfp_get_sn(inst); - unsigned int sm = vfp_get_sm(inst); - unsigned int vecitr, veclen, vecstride; - struct op* fop; - - vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK); - - fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)]; - - /* - * fcvtsd takes a dN register number as destination, not sN. - * Technically, if bit 0 of dd is set, this is an invalid - * instruction. However, we ignore this for efficiency. - * It also only operates on scalars. - */ - if (fop->flags & OP_DD) - dest = vfp_get_dd(inst); - else - dest = vfp_get_sd(inst); - - /* - * If destination bank is zero, vector length is always '1'. - * ARM DDI0100F C5.1.3, C5.3.2. - */ - if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0) - veclen = 0; - else - veclen = fpscr & FPSCR_LENGTH_MASK; - - LOG_TRACE(Core_ARM, "vecstride=%u veclen=%u", vecstride, (veclen >> FPSCR_LENGTH_BIT) + 1); - - if (!fop->fn) { - LOG_CRITICAL(Core_ARM, "could not find single op %d, inst=0x%x@0x%x", FEXT_TO_IDX(inst), - inst, state->Reg[15]); - Crash(); - goto invalid; - } - - for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { - s32 m = vfp_get_float(state, sm); - u32 except; - char type; - - type = (fop->flags & OP_DD) ? 'd' : 's'; - if (op == FOP_EXT) - LOG_TRACE(Core_ARM, "itr%d (%c%u) = op[%u] (s%u=%08x)", vecitr >> FPSCR_LENGTH_BIT, - type, dest, sn, sm, m); - else - LOG_TRACE(Core_ARM, "itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)", - vecitr >> FPSCR_LENGTH_BIT, type, dest, sn, FOP_TO_IDX(op), sm, m); - - except = fop->fn(state, dest, sn, m, fpscr); - LOG_TRACE(Core_ARM, "itr%d: exceptions=%08x", vecitr >> FPSCR_LENGTH_BIT, except); - - exceptions |= except & ~VFP_NAN_FLAG; - - /* - * CHECK: It appears to be undefined whether we stop when - * we encounter an exception. We continue. - */ - dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7); - sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7); - if (FREG_BANK(sm) != 0) - sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7); - } - return exceptions; - -invalid: - return (u32)-1; -} -- cgit v1.2.3