From b172f0d770486d4367fbea22906a5e908ef621e8 Mon Sep 17 00:00:00 2001 From: bunnei Date: Tue, 2 Jan 2018 22:24:12 -0500 Subject: arm: Remove SkyEye/Dyncom code that is ARMv6-only. --- src/core/arm/skyeye_common/vfp/vfpdouble.cpp | 1247 -------------------------- 1 file changed, 1247 deletions(-) delete mode 100644 src/core/arm/skyeye_common/vfp/vfpdouble.cpp (limited to 'src/core/arm/skyeye_common/vfp/vfpdouble.cpp') diff --git a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp b/src/core/arm/skyeye_common/vfp/vfpdouble.cpp deleted file mode 100644 index e5cb54aab..000000000 --- a/src/core/arm/skyeye_common/vfp/vfpdouble.cpp +++ /dev/null @@ -1,1247 +0,0 @@ -/* - vfp/vfpdouble.c - ARM VFPv3 emulation unit - SoftFloat double instruction - Copyright (C) 2003 Skyeye Develop Group - for help please send mail to - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -*/ - -/* - * This code is derived in part from : - * - Android kernel - * - John R. Housers softfloat library, which - * carries the following notice: - * - * =========================================================================== - * This C source file is part of the SoftFloat IEC/IEEE Floating-point - * Arithmetic Package, Release 2. - * - * Written by John R. Hauser. This work was made possible in part by the - * International Computer Science Institute, located at Suite 600, 1947 Center - * Street, Berkeley, California 94704. Funding was partially provided by the - * National Science Foundation under grant MIP-9311980. The original version - * of this code was written as part of a project to build a fixed-point vector - * processor in collaboration with the University of California at Berkeley, - * overseen by Profs. Nelson Morgan and John Wawrzynek. More information - * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ - * arithmetic/softfloat.html'. - * - * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort - * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT - * TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO - * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY - * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. - * - * Derivative works are acceptable, even for commercial purposes, so long as - * (1) they include prominent notice that the work is derivative, and (2) they - * include prominent notice akin to these three paragraphs for those parts of - * this code that are retained. - * =========================================================================== - */ - -#include -#include "common/logging/log.h" -#include "core/arm/skyeye_common/vfp/asm_vfp.h" -#include "core/arm/skyeye_common/vfp/vfp.h" -#include "core/arm/skyeye_common/vfp/vfp_helper.h" - -static struct vfp_double vfp_double_default_qnan = { - 2047, 0, VFP_DOUBLE_SIGNIFICAND_QNAN, -}; - -static void vfp_double_dump(const char* str, struct vfp_double* d) { - LOG_TRACE(Core_ARM, "VFP: %s: sign=%d exponent=%d significand=%016llx", str, d->sign != 0, - d->exponent, d->significand); -} - -static void vfp_double_normalise_denormal(struct vfp_double* vd) { - int bits = 31 - fls((u32)(vd->significand >> 32)); - if (bits == 31) - bits = 63 - fls((u32)vd->significand); - - vfp_double_dump("normalise_denormal: in", vd); - - if (bits) { - vd->exponent -= bits - 1; - vd->significand <<= bits; - } - - vfp_double_dump("normalise_denormal: out", vd); -} - -u32 vfp_double_normaliseround(ARMul_State* state, int dd, struct vfp_double* vd, u32 fpscr, - u32 exceptions, const char* func) { - u64 significand, incr; - int exponent, shift, underflow; - u32 rmode; - - vfp_double_dump("pack: in", vd); - - /* - * Infinities and NaNs are a special case. - */ - if (vd->exponent == 2047 && (vd->significand == 0 || exceptions)) - goto pack; - - /* - * Special-case zero. - */ - if (vd->significand == 0) { - vd->exponent = 0; - goto pack; - } - - exponent = vd->exponent; - significand = vd->significand; - - shift = 32 - fls((u32)(significand >> 32)); - if (shift == 32) - shift = 64 - fls((u32)significand); - if (shift) { - exponent -= shift; - significand <<= shift; - } - -#if 1 - vd->exponent = exponent; - vd->significand = significand; - vfp_double_dump("pack: normalised", vd); -#endif - - /* - * Tiny number? - */ - underflow = exponent < 0; - if (underflow) { - significand = vfp_shiftright64jamming(significand, -exponent); - exponent = 0; -#if 1 - vd->exponent = exponent; - vd->significand = significand; - vfp_double_dump("pack: tiny number", vd); -#endif - if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1))) - underflow = 0; - - int type = vfp_double_type(vd); - - if ((type & VFP_DENORMAL) && (fpscr & FPSCR_FLUSH_TO_ZERO)) { - // Flush denormal to positive 0 - significand = 0; - - vd->sign = 0; - vd->significand = significand; - - underflow = 0; - exceptions |= FPSCR_UFC; - } - } - - /* - * Select rounding increment. - */ - incr = 0; - rmode = fpscr & FPSCR_RMODE_MASK; - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 1ULL << VFP_DOUBLE_LOW_BITS; - if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0)) - incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1; - - LOG_TRACE(Core_ARM, "VFP: rounding increment = 0x%08llx", incr); - - /* - * Is our rounding going to overflow? - */ - if ((significand + incr) < significand) { - exponent += 1; - significand = (significand >> 1) | (significand & 1); - incr >>= 1; -#if 1 - vd->exponent = exponent; - vd->significand = significand; - vfp_double_dump("pack: overflow", vd); -#endif - } - - /* - * If any of the low bits (which will be shifted out of the - * number) are non-zero, the result is inexact. - */ - if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1)) - exceptions |= FPSCR_IXC; - - /* - * Do our rounding. - */ - significand += incr; - - /* - * Infinity? - */ - if (exponent >= 2046) { - exceptions |= FPSCR_OFC | FPSCR_IXC; - if (incr == 0) { - vd->exponent = 2045; - vd->significand = 0x7fffffffffffffffULL; - } else { - vd->exponent = 2047; /* infinity */ - vd->significand = 0; - } - } else { - if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0) - exponent = 0; - if (exponent || significand > 0x8000000000000000ULL) - underflow = 0; - if (underflow) - exceptions |= FPSCR_UFC; - vd->exponent = exponent; - vd->significand = significand >> 1; - } - -pack: - vfp_double_dump("pack: final", vd); - { - s64 d = vfp_double_pack(vd); - LOG_TRACE(Core_ARM, "VFP: %s: d(d%d)=%016llx exceptions=%08x", func, dd, d, exceptions); - vfp_put_double(state, d, dd); - } - return exceptions; -} - -/* - * Propagate the NaN, setting exceptions if it is signalling. - * 'n' is always a NaN. 'm' may be a number, NaN or infinity. - */ -static u32 vfp_propagate_nan(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm, - u32 fpscr) { - struct vfp_double* nan; - int tn, tm = 0; - - tn = vfp_double_type(vdn); - - if (vdm) - tm = vfp_double_type(vdm); - - if (fpscr & FPSCR_DEFAULT_NAN) - /* - * Default NaN mode - always returns a quiet NaN - */ - nan = &vfp_double_default_qnan; - else { - /* - * Contemporary mode - select the first signalling - * NAN, or if neither are signalling, the first - * quiet NAN. - */ - if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN)) - nan = vdn; - else - nan = vdm; - /* - * Make the NaN quiet. - */ - nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN; - } - - *vdd = *nan; - - /* - * If one was a signalling NAN, raise invalid operation. - */ - return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG; -} - -/* - * Extended operations - */ -static u32 vfp_double_fabs(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - vfp_put_double(state, vfp_double_packed_abs(vfp_get_double(state, dm)), dd); - return 0; -} - -static u32 vfp_double_fcpy(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - vfp_put_double(state, vfp_get_double(state, dm), dd); - return 0; -} - -static u32 vfp_double_fneg(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - vfp_put_double(state, vfp_double_packed_negate(vfp_get_double(state, dm)), dd); - return 0; -} - -static u32 vfp_double_fsqrt(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - vfp_double vdm, vdd, *vdp; - int ret, tm; - u32 exceptions = 0; - - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - - tm = vfp_double_type(&vdm); - if (tm & (VFP_NAN | VFP_INFINITY)) { - vdp = &vdd; - - if (tm & VFP_NAN) - ret = vfp_propagate_nan(vdp, &vdm, nullptr, fpscr); - else if (vdm.sign == 0) { - sqrt_copy: - vdp = &vdm; - ret = 0; - } else { - sqrt_invalid: - vdp = &vfp_double_default_qnan; - ret = FPSCR_IOC; - } - vfp_put_double(state, vfp_double_pack(vdp), dd); - return ret; - } - - /* - * sqrt(+/- 0) == +/- 0 - */ - if (tm & VFP_ZERO) - goto sqrt_copy; - - /* - * Normalise a denormalised number - */ - if (tm & VFP_DENORMAL) - vfp_double_normalise_denormal(&vdm); - - /* - * sqrt(<0) = invalid - */ - if (vdm.sign) - goto sqrt_invalid; - - vfp_double_dump("sqrt", &vdm); - - /* - * Estimate the square root. - */ - vdd.sign = 0; - vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023; - vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31; - - vfp_double_dump("sqrt estimate1", &vdd); - - vdm.significand >>= 1 + (vdm.exponent & 1); - vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand); - - vfp_double_dump("sqrt estimate2", &vdd); - - /* - * And now adjust. - */ - if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) { - if (vdd.significand < 2) { - vdd.significand = ~0ULL; - } else { - u64 termh, terml, remh, reml; - vdm.significand <<= 2; - mul64to128(&termh, &terml, vdd.significand, vdd.significand); - sub128(&remh, &reml, vdm.significand, 0, termh, terml); - while ((s64)remh < 0) { - vdd.significand -= 1; - shift64left(&termh, &terml, vdd.significand); - terml |= 1; - add128(&remh, &reml, remh, reml, termh, terml); - } - vdd.significand |= (remh | reml) != 0; - } - } - vdd.significand = vfp_shiftright64jamming(vdd.significand, 1); - - exceptions |= vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fsqrt"); - - return exceptions; -} - -/* - * Equal := ZC - * Less than := N - * Greater than := C - * Unordered := CV - */ -static u32 vfp_compare(ARMul_State* state, int dd, int signal_on_qnan, int dm, u32 fpscr) { - s64 d, m; - u32 ret = 0; - - LOG_TRACE(Core_ARM, "In %s, state=0x%p, fpscr=0x%x", __FUNCTION__, state, fpscr); - m = vfp_get_double(state, dm); - if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) { - ret |= FPSCR_CFLAG | FPSCR_VFLAG; - if (signal_on_qnan || - !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) - /* - * Signalling NaN, or signalling on quiet NaN - */ - ret |= FPSCR_IOC; - } - - d = vfp_get_double(state, dd); - if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) { - ret |= FPSCR_CFLAG | FPSCR_VFLAG; - if (signal_on_qnan || - !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1)))) - /* - * Signalling NaN, or signalling on quiet NaN - */ - ret |= FPSCR_IOC; - } - - if (ret == 0) { - // printf("In %s, d=%lld, m =%lld\n ", __FUNCTION__, d, m); - if (d == m || vfp_double_packed_abs(d | m) == 0) { - /* - * equal - */ - ret |= FPSCR_ZFLAG | FPSCR_CFLAG; - // printf("In %s,1 ret=0x%x\n", __FUNCTION__, ret); - } else if (vfp_double_packed_sign(d ^ m)) { - /* - * different signs - */ - if (vfp_double_packed_sign(d)) - /* - * d is negative, so d < m - */ - ret |= FPSCR_NFLAG; - else - /* - * d is positive, so d > m - */ - ret |= FPSCR_CFLAG; - } else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) { - /* - * d < m - */ - ret |= FPSCR_NFLAG; - } else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) { - /* - * d > m - */ - ret |= FPSCR_CFLAG; - } - } - LOG_TRACE(Core_ARM, "In %s, state=0x%p, ret=0x%x", __FUNCTION__, state, ret); - - return ret; -} - -static u32 vfp_double_fcmp(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_compare(state, dd, 0, dm, fpscr); -} - -static u32 vfp_double_fcmpe(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_compare(state, dd, 1, dm, fpscr); -} - -static u32 vfp_double_fcmpz(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_compare(state, dd, 0, VFP_REG_ZERO, fpscr); -} - -static u32 vfp_double_fcmpez(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_compare(state, dd, 1, VFP_REG_ZERO, fpscr); -} - -static u32 vfp_double_fcvts(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - struct vfp_single vsd; - int tm; - u32 exceptions = 0; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - - tm = vfp_double_type(&vdm); - - /* - * If we have a signalling NaN, signal invalid operation. - */ - if (tm == VFP_SNAN) - exceptions = FPSCR_IOC; - - if (tm & VFP_DENORMAL) - vfp_double_normalise_denormal(&vdm); - - vsd.sign = vdm.sign; - vsd.significand = vfp_hi64to32jamming(vdm.significand); - - /* - * If we have an infinity or a NaN, the exponent must be 255 - */ - if (tm & (VFP_INFINITY | VFP_NAN)) { - vsd.exponent = 255; - if (tm == VFP_QNAN) - vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN; - goto pack_nan; - } else if (tm & VFP_ZERO) - vsd.exponent = 0; - else - vsd.exponent = vdm.exponent - (1023 - 127); - - return vfp_single_normaliseround(state, sd, &vsd, fpscr, exceptions, "fcvts"); - -pack_nan: - vfp_put_float(state, vfp_single_pack(&vsd), sd); - return exceptions; -} - -static u32 vfp_double_fuito(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - u32 m = vfp_get_float(state, dm); - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - vdm.sign = 0; - vdm.exponent = 1023 + 63 - 1; - vdm.significand = (u64)m; - - return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fuito"); -} - -static u32 vfp_double_fsito(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - u32 m = vfp_get_float(state, dm); - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - vdm.sign = (m & 0x80000000) >> 16; - vdm.exponent = 1023 + 63 - 1; - vdm.significand = vdm.sign ? (~m + 1) : m; - - return vfp_double_normaliseround(state, dd, &vdm, fpscr, 0, "fsito"); -} - -static u32 vfp_double_ftoui(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - u32 d, exceptions = 0; - int rmode = fpscr & FPSCR_RMODE_MASK; - int tm; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - - /* - * Do we have a denormalised number? - */ - tm = vfp_double_type(&vdm); - if (tm & VFP_DENORMAL) - exceptions |= FPSCR_IDC; - - if (tm & VFP_NAN) - vdm.sign = 1; - - if (vdm.exponent >= 1023 + 32) { - d = vdm.sign ? 0 : 0xffffffff; - exceptions = FPSCR_IOC; - } else if (vdm.exponent >= 1023) { - int shift = 1023 + 63 - vdm.exponent; - u64 rem, incr = 0; - - /* - * 2^0 <= m < 2^32-2^8 - */ - d = (u32)((vdm.significand << 1) >> shift); - rem = vdm.significand << (65 - shift); - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 0x8000000000000000ULL; - if ((d & 1) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { - incr = ~0ULL; - } - - if ((rem + incr) < rem) { - if (d < 0xffffffff) - d += 1; - else - exceptions |= FPSCR_IOC; - } - - if (d && vdm.sign) { - d = 0; - exceptions |= FPSCR_IOC; - } else if (rem) - exceptions |= FPSCR_IXC; - } else { - d = 0; - if (vdm.exponent | vdm.significand) { - if (rmode == FPSCR_ROUND_NEAREST) { - if (vdm.exponent >= 1022) { - d = vdm.sign ? 0 : 1; - exceptions |= vdm.sign ? FPSCR_IOC : FPSCR_IXC; - } else { - exceptions |= FPSCR_IXC; - } - } else if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) { - d = 1; - exceptions |= FPSCR_IXC; - } else if (rmode == FPSCR_ROUND_MINUSINF) { - exceptions |= vdm.sign ? FPSCR_IOC : FPSCR_IXC; - } else { - exceptions |= FPSCR_IXC; - } - } - } - - LOG_TRACE(Core_ARM, "VFP: ftoui: d(s%d)=%08x exceptions=%08x", sd, d, exceptions); - - vfp_put_float(state, d, sd); - - return exceptions; -} - -static u32 vfp_double_ftouiz(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_double_ftoui(state, sd, unused, dm, - (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO); -} - -static u32 vfp_double_ftosi(ARMul_State* state, int sd, int unused, int dm, u32 fpscr) { - struct vfp_double vdm; - u32 d, exceptions = 0; - int rmode = fpscr & FPSCR_RMODE_MASK; - int tm; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - vfp_double_dump("VDM", &vdm); - - /* - * Do we have denormalised number? - */ - tm = vfp_double_type(&vdm); - if (tm & VFP_DENORMAL) - exceptions |= FPSCR_IDC; - - if (tm & VFP_NAN) { - d = 0; - exceptions |= FPSCR_IOC; - } else if (vdm.exponent >= 1023 + 31) { - d = 0x7fffffff; - if (vdm.sign) - d = ~d; - exceptions |= FPSCR_IOC; - } else if (vdm.exponent >= 1023) { - int shift = 1023 + 63 - vdm.exponent; /* 58 */ - u64 rem, incr = 0; - - d = (u32)((vdm.significand << 1) >> shift); - rem = vdm.significand << (65 - shift); - - if (rmode == FPSCR_ROUND_NEAREST) { - incr = 0x8000000000000000ULL; - if ((d & 1) == 0) - incr -= 1; - } else if (rmode == FPSCR_ROUND_TOZERO) { - incr = 0; - } else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) { - incr = ~0ULL; - } - - if ((rem + incr) < rem && d < 0xffffffff) - d += 1; - if (d > (0x7fffffffU + (vdm.sign != 0))) { - d = (0x7fffffffU + (vdm.sign != 0)); - exceptions |= FPSCR_IOC; - } else if (rem) - exceptions |= FPSCR_IXC; - - if (vdm.sign) - d = (~d + 1); - } else { - d = 0; - if (vdm.exponent | vdm.significand) { - exceptions |= FPSCR_IXC; - if (rmode == FPSCR_ROUND_NEAREST) { - if (vdm.exponent >= 1022) { - d = vdm.sign ? 0xffffffff : 1; - } else { - d = 0; - } - } else if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0) { - d = 1; - } else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) { - d = 0xffffffff; - } - } - } - - LOG_TRACE(Core_ARM, "VFP: ftosi: d(s%d)=%08x exceptions=%08x", sd, d, exceptions); - - vfp_put_float(state, (s32)d, sd); - - return exceptions; -} - -static u32 vfp_double_ftosiz(ARMul_State* state, int dd, int unused, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_double_ftosi(state, dd, unused, dm, - (fpscr & ~FPSCR_RMODE_MASK) | FPSCR_ROUND_TOZERO); -} - -static struct op fops_ext[] = { - {vfp_double_fcpy, 0}, // 0x00000000 - FEXT_FCPY - {vfp_double_fabs, 0}, // 0x00000001 - FEXT_FABS - {vfp_double_fneg, 0}, // 0x00000002 - FEXT_FNEG - {vfp_double_fsqrt, 0}, // 0x00000003 - FEXT_FSQRT - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {vfp_double_fcmp, OP_SCALAR}, // 0x00000008 - FEXT_FCMP - {vfp_double_fcmpe, OP_SCALAR}, // 0x00000009 - FEXT_FCMPE - {vfp_double_fcmpz, OP_SCALAR}, // 0x0000000A - FEXT_FCMPZ - {vfp_double_fcmpez, OP_SCALAR}, // 0x0000000B - FEXT_FCMPEZ - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {vfp_double_fcvts, OP_SCALAR | OP_DD}, // 0x0000000F - FEXT_FCVT - {vfp_double_fuito, OP_SCALAR | OP_SM}, // 0x00000010 - FEXT_FUITO - {vfp_double_fsito, OP_SCALAR | OP_SM}, // 0x00000011 - FEXT_FSITO - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {nullptr, 0}, - {vfp_double_ftoui, OP_SCALAR | OP_SD}, // 0x00000018 - FEXT_FTOUI - {vfp_double_ftouiz, OP_SCALAR | OP_SD}, // 0x00000019 - FEXT_FTOUIZ - {vfp_double_ftosi, OP_SCALAR | OP_SD}, // 0x0000001A - FEXT_FTOSI - {vfp_double_ftosiz, OP_SCALAR | OP_SD}, // 0x0000001B - FEXT_FTOSIZ -}; - -static u32 vfp_double_fadd_nonnumber(struct vfp_double* vdd, struct vfp_double* vdn, - struct vfp_double* vdm, u32 fpscr) { - struct vfp_double* vdp; - u32 exceptions = 0; - int tn, tm; - - tn = vfp_double_type(vdn); - tm = vfp_double_type(vdm); - - if (tn & tm & VFP_INFINITY) { - /* - * Two infinities. Are they different signs? - */ - if (vdn->sign ^ vdm->sign) { - /* - * different signs -> invalid - */ - exceptions = FPSCR_IOC; - vdp = &vfp_double_default_qnan; - } else { - /* - * same signs -> valid - */ - vdp = vdn; - } - } else if (tn & VFP_INFINITY && tm & VFP_NUMBER) { - /* - * One infinity and one number -> infinity - */ - vdp = vdn; - } else { - /* - * 'n' is a NaN of some type - */ - return vfp_propagate_nan(vdd, vdn, vdm, fpscr); - } - *vdd = *vdp; - return exceptions; -} - -u32 vfp_double_add(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm, - u32 fpscr) { - u32 exp_diff; - u64 m_sig; - - if (vdn->significand & (1ULL << 63) || vdm->significand & (1ULL << 63)) { - LOG_INFO(Core_ARM, "VFP: bad FP values in %s", __func__); - vfp_double_dump("VDN", vdn); - vfp_double_dump("VDM", vdm); - } - - /* - * Ensure that 'n' is the largest magnitude number. Note that - * if 'n' and 'm' have equal exponents, we do not swap them. - * This ensures that NaN propagation works correctly. - */ - if (vdn->exponent < vdm->exponent) { - std::swap(vdm, vdn); - } - - /* - * Is 'n' an infinity or a NaN? Note that 'm' may be a number, - * infinity or a NaN here. - */ - if (vdn->exponent == 2047) - return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr); - - /* - * We have two proper numbers, where 'vdn' is the larger magnitude. - * - * Copy 'n' to 'd' before doing the arithmetic. - */ - *vdd = *vdn; - - /* - * Align 'm' with the result. - */ - exp_diff = vdn->exponent - vdm->exponent; - m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff); - - /* - * If the signs are different, we are really subtracting. - */ - if (vdn->sign ^ vdm->sign) { - m_sig = vdn->significand - m_sig; - if ((s64)m_sig < 0) { - vdd->sign = vfp_sign_negate(vdd->sign); - m_sig = (~m_sig + 1); - } else if (m_sig == 0) { - vdd->sign = (fpscr & FPSCR_RMODE_MASK) == FPSCR_ROUND_MINUSINF ? 0x8000 : 0; - } - } else { - m_sig += vdn->significand; - } - vdd->significand = m_sig; - - return 0; -} - -u32 vfp_double_multiply(struct vfp_double* vdd, struct vfp_double* vdn, struct vfp_double* vdm, - u32 fpscr) { - vfp_double_dump("VDN", vdn); - vfp_double_dump("VDM", vdm); - - /* - * Ensure that 'n' is the largest magnitude number. Note that - * if 'n' and 'm' have equal exponents, we do not swap them. - * This ensures that NaN propagation works correctly. - */ - if (vdn->exponent < vdm->exponent) { - std::swap(vdm, vdn); - LOG_TRACE(Core_ARM, "VFP: swapping M <-> N"); - } - - vdd->sign = vdn->sign ^ vdm->sign; - - /* - * If 'n' is an infinity or NaN, handle it. 'm' may be anything. - */ - if (vdn->exponent == 2047) { - if (vdn->significand || (vdm->exponent == 2047 && vdm->significand)) - return vfp_propagate_nan(vdd, vdn, vdm, fpscr); - if ((vdm->exponent | vdm->significand) == 0) { - *vdd = vfp_double_default_qnan; - return FPSCR_IOC; - } - vdd->exponent = vdn->exponent; - vdd->significand = 0; - return 0; - } - - /* - * If 'm' is zero, the result is always zero. In this case, - * 'n' may be zero or a number, but it doesn't matter which. - */ - if ((vdm->exponent | vdm->significand) == 0) { - vdd->exponent = 0; - vdd->significand = 0; - return 0; - } - - /* - * We add 2 to the destination exponent for the same reason - * as the addition case - though this time we have +1 from - * each input operand. - */ - vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2; - vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand); - - vfp_double_dump("VDD", vdd); - return 0; -} - -#define NEG_MULTIPLY (1 << 0) -#define NEG_SUBTRACT (1 << 1) - -static u32 vfp_double_multiply_accumulate(ARMul_State* state, int dd, int dn, int dm, u32 fpscr, - u32 negate, const char* func) { - struct vfp_double vdd, vdp, vdn, vdm; - u32 exceptions = 0; - - exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); - - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); - - exceptions |= vfp_double_multiply(&vdp, &vdn, &vdm, fpscr); - if (negate & NEG_MULTIPLY) - vdp.sign = vfp_sign_negate(vdp.sign); - - exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dd), fpscr); - if (vdn.exponent == 0 && vdn.significand != 0) - vfp_double_normalise_denormal(&vdn); - - if (negate & NEG_SUBTRACT) - vdn.sign = vfp_sign_negate(vdn.sign); - - exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr); - - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, func); -} - -/* - * Standard operations - */ - -/* - * sd = sd + (sn * sm) - */ -static u32 vfp_double_fmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, 0, "fmac"); -} - -/* - * sd = sd - (sn * sm) - */ -static u32 vfp_double_fnmac(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac"); -} - -/* - * sd = -sd + (sn * sm) - */ -static u32 vfp_double_fmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc"); -} - -/* - * sd = -sd - (sn * sm) - */ -static u32 vfp_double_fnmsc(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - return vfp_double_multiply_accumulate(state, dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, - "fnmsc"); -} - -/* - * sd = sn * sm - */ -static u32 vfp_double_fmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions = 0; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); - - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); - - exceptions |= vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fmul"); -} - -/* - * sd = -(sn * sm) - */ -static u32 vfp_double_fnmul(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions = 0; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); - - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); - - exceptions |= vfp_double_multiply(&vdd, &vdn, &vdm, fpscr); - vdd.sign = vfp_sign_negate(vdd.sign); - - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fnmul"); -} - -/* - * sd = sn + sm - */ -static u32 vfp_double_fadd(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions = 0; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); - - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); - - exceptions |= vfp_double_add(&vdd, &vdn, &vdm, fpscr); - - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fadd"); -} - -/* - * sd = sn - sm - */ -static u32 vfp_double_fsub(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions = 0; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); - if (vdn.exponent == 0 && vdn.significand) - vfp_double_normalise_denormal(&vdn); - - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - if (vdm.exponent == 0 && vdm.significand) - vfp_double_normalise_denormal(&vdm); - - /* - * Subtraction is like addition, but with a negated operand. - */ - vdm.sign = vfp_sign_negate(vdm.sign); - - exceptions |= vfp_double_add(&vdd, &vdn, &vdm, fpscr); - - return vfp_double_normaliseround(state, dd, &vdd, fpscr, exceptions, "fsub"); -} - -/* - * sd = sn / sm - */ -static u32 vfp_double_fdiv(ARMul_State* state, int dd, int dn, int dm, u32 fpscr) { - struct vfp_double vdd, vdn, vdm; - u32 exceptions = 0; - int tm, tn; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - exceptions |= vfp_double_unpack(&vdn, vfp_get_double(state, dn), fpscr); - exceptions |= vfp_double_unpack(&vdm, vfp_get_double(state, dm), fpscr); - - vdd.sign = vdn.sign ^ vdm.sign; - - tn = vfp_double_type(&vdn); - tm = vfp_double_type(&vdm); - - /* - * Is n a NAN? - */ - if (tn & VFP_NAN) - goto vdn_nan; - - /* - * Is m a NAN? - */ - if (tm & VFP_NAN) - goto vdm_nan; - - /* - * If n and m are infinity, the result is invalid - * If n and m are zero, the result is invalid - */ - if (tm & tn & (VFP_INFINITY | VFP_ZERO)) - goto invalid; - - /* - * If n is infinity, the result is infinity - */ - if (tn & VFP_INFINITY) - goto infinity; - - /* - * If m is zero, raise div0 exceptions - */ - if (tm & VFP_ZERO) - goto divzero; - - /* - * If m is infinity, or n is zero, the result is zero - */ - if (tm & VFP_INFINITY || tn & VFP_ZERO) - goto zero; - - if (tn & VFP_DENORMAL) - vfp_double_normalise_denormal(&vdn); - if (tm & VFP_DENORMAL) - vfp_double_normalise_denormal(&vdm); - - /* - * Ok, we have two numbers, we can perform division. - */ - vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1; - vdm.significand <<= 1; - if (vdm.significand <= (2 * vdn.significand)) { - vdn.significand >>= 1; - vdd.exponent++; - } - vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand); - if ((vdd.significand & 0x1ff) <= 2) { - u64 termh, terml, remh, reml; - mul64to128(&termh, &terml, vdm.significand, vdd.significand); - sub128(&remh, &reml, vdn.significand, 0, termh, terml); - while ((s64)remh < 0) { - vdd.significand -= 1; - add128(&remh, &reml, remh, reml, 0, vdm.significand); - } - vdd.significand |= (reml != 0); - } - return vfp_double_normaliseround(state, dd, &vdd, fpscr, 0, "fdiv"); - -vdn_nan: - exceptions |= vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr); -pack: - vfp_put_double(state, vfp_double_pack(&vdd), dd); - return exceptions; - -vdm_nan: - exceptions |= vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr); - goto pack; - -zero: - vdd.exponent = 0; - vdd.significand = 0; - goto pack; - -divzero: - exceptions |= FPSCR_DZC; -infinity: - vdd.exponent = 2047; - vdd.significand = 0; - goto pack; - -invalid: - vfp_put_double(state, vfp_double_pack(&vfp_double_default_qnan), dd); - return FPSCR_IOC; -} - -static struct op fops[] = { - {vfp_double_fmac, 0}, {vfp_double_fmsc, 0}, {vfp_double_fmul, 0}, - {vfp_double_fadd, 0}, {vfp_double_fnmac, 0}, {vfp_double_fnmsc, 0}, - {vfp_double_fnmul, 0}, {vfp_double_fsub, 0}, {vfp_double_fdiv, 0}, -}; - -#define FREG_BANK(x) ((x)&0x0c) -#define FREG_IDX(x) ((x)&3) - -u32 vfp_double_cpdo(ARMul_State* state, u32 inst, u32 fpscr) { - u32 op = inst & FOP_MASK; - u32 exceptions = 0; - unsigned int dest; - unsigned int dn = vfp_get_dn(inst); - unsigned int dm; - unsigned int vecitr, veclen, vecstride; - struct op* fop; - - LOG_TRACE(Core_ARM, "In %s", __FUNCTION__); - vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK)); - - fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)]; - - /* - * fcvtds takes an sN register number as destination, not dN. - * It also always operates on scalars. - */ - if (fop->flags & OP_SD) - dest = vfp_get_sd(inst); - else - dest = vfp_get_dd(inst); - - /* - * f[us]ito takes a sN operand, not a dN operand. - */ - if (fop->flags & OP_SM) - dm = vfp_get_sm(inst); - else - dm = vfp_get_dm(inst); - - /* - * If destination bank is zero, vector length is always '1'. - * ARM DDI0100F C5.1.3, C5.3.2. - */ - if ((fop->flags & OP_SCALAR) || (FREG_BANK(dest) == 0)) - veclen = 0; - else - veclen = fpscr & FPSCR_LENGTH_MASK; - - LOG_TRACE(Core_ARM, "VFP: vecstride=%u veclen=%u", vecstride, - (veclen >> FPSCR_LENGTH_BIT) + 1); - - if (!fop->fn) { - printf("VFP: could not find double op %d\n", FEXT_TO_IDX(inst)); - goto invalid; - } - - for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) { - u32 except; - char type; - - type = (fop->flags & OP_SD) ? 's' : 'd'; - if (op == FOP_EXT) - LOG_TRACE(Core_ARM, "VFP: itr%d (%c%u) = op[%u] (d%u)", vecitr >> FPSCR_LENGTH_BIT, - type, dest, dn, dm); - else - LOG_TRACE(Core_ARM, "VFP: itr%d (%c%u) = (d%u) op[%u] (d%u)", - vecitr >> FPSCR_LENGTH_BIT, type, dest, dn, FOP_TO_IDX(op), dm); - - except = fop->fn(state, dest, dn, dm, fpscr); - LOG_TRACE(Core_ARM, "VFP: itr%d: exceptions=%08x", vecitr >> FPSCR_LENGTH_BIT, except); - - exceptions |= except & ~VFP_NAN_FLAG; - - /* - * CHECK: It appears to be undefined whether we stop when - * we encounter an exception. We continue. - */ - dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 3); - dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 3); - if (FREG_BANK(dm) != 0) - dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 3); - } - return exceptions; - -invalid: - return ~0; -} -- cgit v1.2.3