summaryrefslogtreecommitdiffstats
path: root/src/video_core/texture_cache/texture_cache.h
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/video_core/texture_cache/texture_cache.h814
1 files changed, 814 insertions, 0 deletions
diff --git a/src/video_core/texture_cache/texture_cache.h b/src/video_core/texture_cache/texture_cache.h
new file mode 100644
index 000000000..c9e72531a
--- /dev/null
+++ b/src/video_core/texture_cache/texture_cache.h
@@ -0,0 +1,814 @@
+// Copyright 2019 yuzu Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#pragma once
+
+#include <algorithm>
+#include <array>
+#include <memory>
+#include <mutex>
+#include <set>
+#include <tuple>
+#include <unordered_map>
+#include <vector>
+
+#include <boost/icl/interval_map.hpp>
+#include <boost/range/iterator_range.hpp>
+
+#include "common/assert.h"
+#include "common/common_types.h"
+#include "common/math_util.h"
+#include "core/core.h"
+#include "core/memory.h"
+#include "core/settings.h"
+#include "video_core/engines/fermi_2d.h"
+#include "video_core/engines/maxwell_3d.h"
+#include "video_core/gpu.h"
+#include "video_core/memory_manager.h"
+#include "video_core/rasterizer_interface.h"
+#include "video_core/surface.h"
+#include "video_core/texture_cache/copy_params.h"
+#include "video_core/texture_cache/surface_base.h"
+#include "video_core/texture_cache/surface_params.h"
+#include "video_core/texture_cache/surface_view.h"
+
+namespace Tegra::Texture {
+struct FullTextureInfo;
+}
+
+namespace VideoCore {
+class RasterizerInterface;
+}
+
+namespace VideoCommon {
+
+using VideoCore::Surface::PixelFormat;
+
+using VideoCore::Surface::SurfaceTarget;
+using RenderTargetConfig = Tegra::Engines::Maxwell3D::Regs::RenderTargetConfig;
+
+template <typename TSurface, typename TView>
+class TextureCache {
+ using IntervalMap = boost::icl::interval_map<CacheAddr, std::set<TSurface>>;
+ using IntervalType = typename IntervalMap::interval_type;
+
+public:
+ void InvalidateRegion(CacheAddr addr, std::size_t size) {
+ std::lock_guard lock{mutex};
+
+ for (const auto& surface : GetSurfacesInRegion(addr, size)) {
+ Unregister(surface);
+ }
+ }
+
+ /***
+ * `Guard` guarantees that rendertargets don't unregister themselves if the
+ * collide. Protection is currently only done on 3D slices.
+ ***/
+ void GuardRenderTargets(bool new_guard) {
+ guard_render_targets = new_guard;
+ }
+
+ void GuardSamplers(bool new_guard) {
+ guard_samplers = new_guard;
+ }
+
+ void FlushRegion(CacheAddr addr, std::size_t size) {
+ std::lock_guard lock{mutex};
+
+ auto surfaces = GetSurfacesInRegion(addr, size);
+ if (surfaces.empty()) {
+ return;
+ }
+ std::sort(surfaces.begin(), surfaces.end(), [](const TSurface& a, const TSurface& b) {
+ return a->GetModificationTick() < b->GetModificationTick();
+ });
+ for (const auto& surface : surfaces) {
+ FlushSurface(surface);
+ }
+ }
+
+ TView GetTextureSurface(const Tegra::Texture::FullTextureInfo& config,
+ const VideoCommon::Shader::Sampler& entry) {
+ std::lock_guard lock{mutex};
+ const auto gpu_addr{config.tic.Address()};
+ if (!gpu_addr) {
+ return {};
+ }
+ const auto params{SurfaceParams::CreateForTexture(system, config, entry)};
+ const auto [surface, view] = GetSurface(gpu_addr, params, true, false);
+ if (guard_samplers) {
+ sampled_textures.push_back(surface);
+ }
+ return view;
+ }
+
+ bool TextureBarrier() {
+ const bool any_rt =
+ std::any_of(sampled_textures.begin(), sampled_textures.end(),
+ [](const auto& surface) { return surface->IsRenderTarget(); });
+ sampled_textures.clear();
+ return any_rt;
+ }
+
+ TView GetDepthBufferSurface(bool preserve_contents) {
+ std::lock_guard lock{mutex};
+ auto& maxwell3d = system.GPU().Maxwell3D();
+
+ if (!maxwell3d.dirty_flags.zeta_buffer) {
+ return depth_buffer.view;
+ }
+ maxwell3d.dirty_flags.zeta_buffer = false;
+
+ const auto& regs{maxwell3d.regs};
+ const auto gpu_addr{regs.zeta.Address()};
+ if (!gpu_addr || !regs.zeta_enable) {
+ SetEmptyDepthBuffer();
+ return {};
+ }
+ const auto depth_params{SurfaceParams::CreateForDepthBuffer(
+ system, regs.zeta_width, regs.zeta_height, regs.zeta.format,
+ regs.zeta.memory_layout.block_width, regs.zeta.memory_layout.block_height,
+ regs.zeta.memory_layout.block_depth, regs.zeta.memory_layout.type)};
+ auto surface_view = GetSurface(gpu_addr, depth_params, preserve_contents, true);
+ if (depth_buffer.target)
+ depth_buffer.target->MarkAsRenderTarget(false);
+ depth_buffer.target = surface_view.first;
+ depth_buffer.view = surface_view.second;
+ if (depth_buffer.target)
+ depth_buffer.target->MarkAsRenderTarget(true);
+ return surface_view.second;
+ }
+
+ TView GetColorBufferSurface(std::size_t index, bool preserve_contents) {
+ std::lock_guard lock{mutex};
+ ASSERT(index < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets);
+ auto& maxwell3d = system.GPU().Maxwell3D();
+ if (!maxwell3d.dirty_flags.color_buffer[index]) {
+ return render_targets[index].view;
+ }
+ maxwell3d.dirty_flags.color_buffer.reset(index);
+
+ const auto& regs{maxwell3d.regs};
+ if (index >= regs.rt_control.count || regs.rt[index].Address() == 0 ||
+ regs.rt[index].format == Tegra::RenderTargetFormat::NONE) {
+ SetEmptyColorBuffer(index);
+ return {};
+ }
+
+ const auto& config{regs.rt[index]};
+ const auto gpu_addr{config.Address()};
+ if (!gpu_addr) {
+ SetEmptyColorBuffer(index);
+ return {};
+ }
+
+ auto surface_view = GetSurface(gpu_addr, SurfaceParams::CreateForFramebuffer(system, index),
+ preserve_contents, true);
+ if (render_targets[index].target)
+ render_targets[index].target->MarkAsRenderTarget(false);
+ render_targets[index].target = surface_view.first;
+ render_targets[index].view = surface_view.second;
+ if (render_targets[index].target)
+ render_targets[index].target->MarkAsRenderTarget(true);
+ return surface_view.second;
+ }
+
+ void MarkColorBufferInUse(std::size_t index) {
+ if (auto& render_target = render_targets[index].target) {
+ render_target->MarkAsModified(true, Tick());
+ }
+ }
+
+ void MarkDepthBufferInUse() {
+ if (depth_buffer.target) {
+ depth_buffer.target->MarkAsModified(true, Tick());
+ }
+ }
+
+ void SetEmptyDepthBuffer() {
+ if (depth_buffer.target == nullptr) {
+ return;
+ }
+ depth_buffer.target->MarkAsRenderTarget(false);
+ depth_buffer.target = nullptr;
+ depth_buffer.view = nullptr;
+ }
+
+ void SetEmptyColorBuffer(std::size_t index) {
+ if (render_targets[index].target == nullptr) {
+ return;
+ }
+ render_targets[index].target->MarkAsRenderTarget(false);
+ render_targets[index].target = nullptr;
+ render_targets[index].view = nullptr;
+ }
+
+ void DoFermiCopy(const Tegra::Engines::Fermi2D::Regs::Surface& src_config,
+ const Tegra::Engines::Fermi2D::Regs::Surface& dst_config,
+ const Tegra::Engines::Fermi2D::Config& copy_config) {
+ std::lock_guard lock{mutex};
+ std::pair<TSurface, TView> dst_surface = GetFermiSurface(dst_config);
+ std::pair<TSurface, TView> src_surface = GetFermiSurface(src_config);
+ ImageBlit(src_surface.second, dst_surface.second, copy_config);
+ dst_surface.first->MarkAsModified(true, Tick());
+ }
+
+ TSurface TryFindFramebufferSurface(const u8* host_ptr) {
+ const CacheAddr cache_addr = ToCacheAddr(host_ptr);
+ if (!cache_addr) {
+ return nullptr;
+ }
+ const CacheAddr page = cache_addr >> registry_page_bits;
+ std::vector<TSurface>& list = registry[page];
+ for (auto& surface : list) {
+ if (surface->GetCacheAddr() == cache_addr) {
+ return surface;
+ }
+ }
+ return nullptr;
+ }
+
+ u64 Tick() {
+ return ++ticks;
+ }
+
+protected:
+ TextureCache(Core::System& system, VideoCore::RasterizerInterface& rasterizer)
+ : system{system}, rasterizer{rasterizer} {
+ for (std::size_t i = 0; i < Tegra::Engines::Maxwell3D::Regs::NumRenderTargets; i++) {
+ SetEmptyColorBuffer(i);
+ }
+
+ SetEmptyDepthBuffer();
+ staging_cache.SetSize(2);
+
+ const auto make_siblings = [this](PixelFormat a, PixelFormat b) {
+ siblings_table[static_cast<std::size_t>(a)] = b;
+ siblings_table[static_cast<std::size_t>(b)] = a;
+ };
+ std::fill(siblings_table.begin(), siblings_table.end(), PixelFormat::Invalid);
+ make_siblings(PixelFormat::Z16, PixelFormat::R16U);
+ make_siblings(PixelFormat::Z32F, PixelFormat::R32F);
+ make_siblings(PixelFormat::Z32FS8, PixelFormat::RG32F);
+
+ sampled_textures.reserve(64);
+ }
+
+ ~TextureCache() = default;
+
+ virtual TSurface CreateSurface(GPUVAddr gpu_addr, const SurfaceParams& params) = 0;
+
+ virtual void ImageCopy(TSurface& src_surface, TSurface& dst_surface,
+ const CopyParams& copy_params) = 0;
+
+ virtual void ImageBlit(TView& src_view, TView& dst_view,
+ const Tegra::Engines::Fermi2D::Config& copy_config) = 0;
+
+ // Depending on the backend, a buffer copy can be slow as it means deoptimizing the texture
+ // and reading it from a sepparate buffer.
+ virtual void BufferCopy(TSurface& src_surface, TSurface& dst_surface) = 0;
+
+ void Register(TSurface surface) {
+ const GPUVAddr gpu_addr = surface->GetGpuAddr();
+ const CacheAddr cache_ptr = ToCacheAddr(system.GPU().MemoryManager().GetPointer(gpu_addr));
+ const std::size_t size = surface->GetSizeInBytes();
+ const std::optional<VAddr> cpu_addr =
+ system.GPU().MemoryManager().GpuToCpuAddress(gpu_addr);
+ if (!cache_ptr || !cpu_addr) {
+ LOG_CRITICAL(HW_GPU, "Failed to register surface with unmapped gpu_address 0x{:016x}",
+ gpu_addr);
+ return;
+ }
+ const bool continuous = system.GPU().MemoryManager().IsBlockContinuous(gpu_addr, size);
+ surface->MarkAsContinuous(continuous);
+ surface->SetCacheAddr(cache_ptr);
+ surface->SetCpuAddr(*cpu_addr);
+ RegisterInnerCache(surface);
+ surface->MarkAsRegistered(true);
+ rasterizer.UpdatePagesCachedCount(*cpu_addr, size, 1);
+ }
+
+ void Unregister(TSurface surface) {
+ if (guard_render_targets && surface->IsProtected()) {
+ return;
+ }
+ const GPUVAddr gpu_addr = surface->GetGpuAddr();
+ const CacheAddr cache_ptr = surface->GetCacheAddr();
+ const std::size_t size = surface->GetSizeInBytes();
+ const VAddr cpu_addr = surface->GetCpuAddr();
+ rasterizer.UpdatePagesCachedCount(cpu_addr, size, -1);
+ UnregisterInnerCache(surface);
+ surface->MarkAsRegistered(false);
+ ReserveSurface(surface->GetSurfaceParams(), surface);
+ }
+
+ TSurface GetUncachedSurface(const GPUVAddr gpu_addr, const SurfaceParams& params) {
+ if (const auto surface = TryGetReservedSurface(params); surface) {
+ surface->SetGpuAddr(gpu_addr);
+ return surface;
+ }
+ // No reserved surface available, create a new one and reserve it
+ auto new_surface{CreateSurface(gpu_addr, params)};
+ return new_surface;
+ }
+
+ std::pair<TSurface, TView> GetFermiSurface(
+ const Tegra::Engines::Fermi2D::Regs::Surface& config) {
+ SurfaceParams params = SurfaceParams::CreateForFermiCopySurface(config);
+ const GPUVAddr gpu_addr = config.Address();
+ return GetSurface(gpu_addr, params, true, false);
+ }
+
+ Core::System& system;
+
+private:
+ enum class RecycleStrategy : u32 {
+ Ignore = 0,
+ Flush = 1,
+ BufferCopy = 3,
+ };
+
+ /**
+ * `PickStrategy` takes care of selecting a proper strategy to deal with a texture recycle.
+ * @param overlaps, the overlapping surfaces registered in the cache.
+ * @param params, the paremeters on the new surface.
+ * @param gpu_addr, the starting address of the new surface.
+ * @param untopological, tells the recycler that the texture has no way to match the overlaps
+ * due to topological reasons.
+ **/
+ RecycleStrategy PickStrategy(std::vector<TSurface>& overlaps, const SurfaceParams& params,
+ const GPUVAddr gpu_addr, const MatchTopologyResult untopological) {
+ if (Settings::values.use_accurate_gpu_emulation) {
+ return RecycleStrategy::Flush;
+ }
+ // 3D Textures decision
+ if (params.block_depth > 1 || params.target == SurfaceTarget::Texture3D) {
+ return RecycleStrategy::Flush;
+ }
+ for (auto s : overlaps) {
+ const auto& s_params = s->GetSurfaceParams();
+ if (s_params.block_depth > 1 || s_params.target == SurfaceTarget::Texture3D) {
+ return RecycleStrategy::Flush;
+ }
+ }
+ // Untopological decision
+ if (untopological == MatchTopologyResult::CompressUnmatch) {
+ return RecycleStrategy::Flush;
+ }
+ if (untopological == MatchTopologyResult::FullMatch && !params.is_tiled) {
+ return RecycleStrategy::Flush;
+ }
+ return RecycleStrategy::Ignore;
+ }
+
+ /**
+ * `RecycleSurface` es a method we use to decide what to do with textures we can't resolve in
+ *the cache It has 2 implemented strategies: Ignore and Flush. Ignore just unregisters all the
+ *overlaps and loads the new texture. Flush, flushes all the overlaps into memory and loads the
+ *new surface from that data.
+ * @param overlaps, the overlapping surfaces registered in the cache.
+ * @param params, the paremeters on the new surface.
+ * @param gpu_addr, the starting address of the new surface.
+ * @param preserve_contents, tells if the new surface should be loaded from meory or left blank
+ * @param untopological, tells the recycler that the texture has no way to match the overlaps
+ * due to topological reasons.
+ **/
+ std::pair<TSurface, TView> RecycleSurface(std::vector<TSurface>& overlaps,
+ const SurfaceParams& params, const GPUVAddr gpu_addr,
+ const bool preserve_contents,
+ const MatchTopologyResult untopological) {
+ const bool do_load = preserve_contents && Settings::values.use_accurate_gpu_emulation;
+ for (auto& surface : overlaps) {
+ Unregister(surface);
+ }
+ switch (PickStrategy(overlaps, params, gpu_addr, untopological)) {
+ case RecycleStrategy::Ignore: {
+ return InitializeSurface(gpu_addr, params, do_load);
+ }
+ case RecycleStrategy::Flush: {
+ std::sort(overlaps.begin(), overlaps.end(),
+ [](const TSurface& a, const TSurface& b) -> bool {
+ return a->GetModificationTick() < b->GetModificationTick();
+ });
+ for (auto& surface : overlaps) {
+ FlushSurface(surface);
+ }
+ return InitializeSurface(gpu_addr, params, preserve_contents);
+ }
+ case RecycleStrategy::BufferCopy: {
+ auto new_surface = GetUncachedSurface(gpu_addr, params);
+ BufferCopy(overlaps[0], new_surface);
+ return {new_surface, new_surface->GetMainView()};
+ }
+ default: {
+ UNIMPLEMENTED_MSG("Unimplemented Texture Cache Recycling Strategy!");
+ return InitializeSurface(gpu_addr, params, do_load);
+ }
+ }
+ }
+
+ /**
+ * `RebuildSurface` this method takes a single surface and recreates into another that
+ * may differ in format, target or width alingment.
+ * @param current_surface, the registered surface in the cache which we want to convert.
+ * @param params, the new surface params which we'll use to recreate the surface.
+ **/
+ std::pair<TSurface, TView> RebuildSurface(TSurface current_surface, const SurfaceParams& params,
+ bool is_render) {
+ const auto gpu_addr = current_surface->GetGpuAddr();
+ const auto& cr_params = current_surface->GetSurfaceParams();
+ TSurface new_surface;
+ if (cr_params.pixel_format != params.pixel_format && !is_render &&
+ GetSiblingFormat(cr_params.pixel_format) == params.pixel_format) {
+ SurfaceParams new_params = params;
+ new_params.pixel_format = cr_params.pixel_format;
+ new_params.component_type = cr_params.component_type;
+ new_params.type = cr_params.type;
+ new_surface = GetUncachedSurface(gpu_addr, new_params);
+ } else {
+ new_surface = GetUncachedSurface(gpu_addr, params);
+ }
+ const auto& final_params = new_surface->GetSurfaceParams();
+ if (cr_params.type != final_params.type ||
+ (cr_params.component_type != final_params.component_type)) {
+ BufferCopy(current_surface, new_surface);
+ } else {
+ std::vector<CopyParams> bricks = current_surface->BreakDown(final_params);
+ for (auto& brick : bricks) {
+ ImageCopy(current_surface, new_surface, brick);
+ }
+ }
+ Unregister(current_surface);
+ Register(new_surface);
+ new_surface->MarkAsModified(current_surface->IsModified(), Tick());
+ return {new_surface, new_surface->GetMainView()};
+ }
+
+ /**
+ * `ManageStructuralMatch` this method takes a single surface and checks with the new surface's
+ * params if it's an exact match, we return the main view of the registered surface. If it's
+ * formats don't match, we rebuild the surface. We call this last method a `Mirage`. If formats
+ * match but the targets don't, we create an overview View of the registered surface.
+ * @param current_surface, the registered surface in the cache which we want to convert.
+ * @param params, the new surface params which we want to check.
+ **/
+ std::pair<TSurface, TView> ManageStructuralMatch(TSurface current_surface,
+ const SurfaceParams& params, bool is_render) {
+ const bool is_mirage = !current_surface->MatchFormat(params.pixel_format);
+ const bool matches_target = current_surface->MatchTarget(params.target);
+ const auto match_check = [&]() -> std::pair<TSurface, TView> {
+ if (matches_target) {
+ return {current_surface, current_surface->GetMainView()};
+ }
+ return {current_surface, current_surface->EmplaceOverview(params)};
+ };
+ if (!is_mirage) {
+ return match_check();
+ }
+ if (!is_render && GetSiblingFormat(current_surface->GetFormat()) == params.pixel_format) {
+ return match_check();
+ }
+ return RebuildSurface(current_surface, params, is_render);
+ }
+
+ /**
+ * `TryReconstructSurface` unlike `RebuildSurface` where we know the registered surface
+ * matches the candidate in some way, we got no guarantess here. We try to see if the overlaps
+ * are sublayers/mipmaps of the new surface, if they all match we end up recreating a surface
+ * for them, else we return nothing.
+ * @param overlaps, the overlapping surfaces registered in the cache.
+ * @param params, the paremeters on the new surface.
+ * @param gpu_addr, the starting address of the new surface.
+ **/
+ std::optional<std::pair<TSurface, TView>> TryReconstructSurface(std::vector<TSurface>& overlaps,
+ const SurfaceParams& params,
+ const GPUVAddr gpu_addr) {
+ if (params.target == SurfaceTarget::Texture3D) {
+ return {};
+ }
+ bool modified = false;
+ TSurface new_surface = GetUncachedSurface(gpu_addr, params);
+ u32 passed_tests = 0;
+ for (auto& surface : overlaps) {
+ const SurfaceParams& src_params = surface->GetSurfaceParams();
+ if (src_params.is_layered || src_params.num_levels > 1) {
+ // We send this cases to recycle as they are more complex to handle
+ return {};
+ }
+ const std::size_t candidate_size = surface->GetSizeInBytes();
+ auto mipmap_layer{new_surface->GetLayerMipmap(surface->GetGpuAddr())};
+ if (!mipmap_layer) {
+ continue;
+ }
+ const auto [layer, mipmap] = *mipmap_layer;
+ if (new_surface->GetMipmapSize(mipmap) != candidate_size) {
+ continue;
+ }
+ modified |= surface->IsModified();
+ // Now we got all the data set up
+ const u32 width = SurfaceParams::IntersectWidth(src_params, params, 0, mipmap);
+ const u32 height = SurfaceParams::IntersectHeight(src_params, params, 0, mipmap);
+ const CopyParams copy_params(0, 0, 0, 0, 0, layer, 0, mipmap, width, height, 1);
+ passed_tests++;
+ ImageCopy(surface, new_surface, copy_params);
+ }
+ if (passed_tests == 0) {
+ return {};
+ // In Accurate GPU all tests should pass, else we recycle
+ } else if (Settings::values.use_accurate_gpu_emulation && passed_tests != overlaps.size()) {
+ return {};
+ }
+ for (auto surface : overlaps) {
+ Unregister(surface);
+ }
+ new_surface->MarkAsModified(modified, Tick());
+ Register(new_surface);
+ return {{new_surface, new_surface->GetMainView()}};
+ }
+
+ /**
+ * `GetSurface` gets the starting address and parameters of a candidate surface and tries
+ * to find a matching surface within the cache. This is done in 3 big steps. The first is to
+ * check the 1st Level Cache in order to find an exact match, if we fail, we move to step 2.
+ * Step 2 is checking if there are any overlaps at all, if none, we just load the texture from
+ * memory else we move to step 3. Step 3 consists on figuring the relationship between the
+ * candidate texture and the overlaps. We divide the scenarios depending if there's 1 or many
+ * overlaps. If there's many, we just try to reconstruct a new surface out of them based on the
+ * candidate's parameters, if we fail, we recycle. When there's only 1 overlap then we have to
+ * check if the candidate is a view (layer/mipmap) of the overlap or if the registered surface
+ * is a mipmap/layer of the candidate. In this last case we reconstruct a new surface.
+ * @param gpu_addr, the starting address of the candidate surface.
+ * @param params, the paremeters on the candidate surface.
+ * @param preserve_contents, tells if the new surface should be loaded from meory or left blank.
+ **/
+ std::pair<TSurface, TView> GetSurface(const GPUVAddr gpu_addr, const SurfaceParams& params,
+ bool preserve_contents, bool is_render) {
+ const auto host_ptr{system.GPU().MemoryManager().GetPointer(gpu_addr)};
+ const auto cache_addr{ToCacheAddr(host_ptr)};
+
+ // Step 0: guarantee a valid surface
+ if (!cache_addr) {
+ // Return a null surface if it's invalid
+ SurfaceParams new_params = params;
+ new_params.width = 1;
+ new_params.height = 1;
+ new_params.depth = 1;
+ new_params.block_height = 0;
+ new_params.block_depth = 0;
+ return InitializeSurface(gpu_addr, new_params, false);
+ }
+
+ // Step 1
+ // Check Level 1 Cache for a fast structural match. If candidate surface
+ // matches at certain level we are pretty much done.
+ if (const auto iter = l1_cache.find(cache_addr); iter != l1_cache.end()) {
+ TSurface& current_surface = iter->second;
+ const auto topological_result = current_surface->MatchesTopology(params);
+ if (topological_result != MatchTopologyResult::FullMatch) {
+ std::vector<TSurface> overlaps{current_surface};
+ return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
+ topological_result);
+ }
+ const auto struct_result = current_surface->MatchesStructure(params);
+ if (struct_result != MatchStructureResult::None &&
+ (params.target != SurfaceTarget::Texture3D ||
+ current_surface->MatchTarget(params.target))) {
+ if (struct_result == MatchStructureResult::FullMatch) {
+ return ManageStructuralMatch(current_surface, params, is_render);
+ } else {
+ return RebuildSurface(current_surface, params, is_render);
+ }
+ }
+ }
+
+ // Step 2
+ // Obtain all possible overlaps in the memory region
+ const std::size_t candidate_size = params.GetGuestSizeInBytes();
+ auto overlaps{GetSurfacesInRegion(cache_addr, candidate_size)};
+
+ // If none are found, we are done. we just load the surface and create it.
+ if (overlaps.empty()) {
+ return InitializeSurface(gpu_addr, params, preserve_contents);
+ }
+
+ // Step 3
+ // Now we need to figure the relationship between the texture and its overlaps
+ // we do a topological test to ensure we can find some relationship. If it fails
+ // inmediatly recycle the texture
+ for (const auto& surface : overlaps) {
+ const auto topological_result = surface->MatchesTopology(params);
+ if (topological_result != MatchTopologyResult::FullMatch) {
+ return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
+ topological_result);
+ }
+ }
+
+ // Split cases between 1 overlap or many.
+ if (overlaps.size() == 1) {
+ TSurface current_surface = overlaps[0];
+ // First check if the surface is within the overlap. If not, it means
+ // two things either the candidate surface is a supertexture of the overlap
+ // or they don't match in any known way.
+ if (!current_surface->IsInside(gpu_addr, gpu_addr + candidate_size)) {
+ if (current_surface->GetGpuAddr() == gpu_addr) {
+ std::optional<std::pair<TSurface, TView>> view =
+ TryReconstructSurface(overlaps, params, gpu_addr);
+ if (view) {
+ return *view;
+ }
+ }
+ return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
+ MatchTopologyResult::FullMatch);
+ }
+ // Now we check if the candidate is a mipmap/layer of the overlap
+ std::optional<TView> view =
+ current_surface->EmplaceView(params, gpu_addr, candidate_size);
+ if (view) {
+ const bool is_mirage = !current_surface->MatchFormat(params.pixel_format);
+ if (is_mirage) {
+ // On a mirage view, we need to recreate the surface under this new view
+ // and then obtain a view again.
+ SurfaceParams new_params = current_surface->GetSurfaceParams();
+ const u32 wh = SurfaceParams::ConvertWidth(
+ new_params.width, new_params.pixel_format, params.pixel_format);
+ const u32 hh = SurfaceParams::ConvertHeight(
+ new_params.height, new_params.pixel_format, params.pixel_format);
+ new_params.width = wh;
+ new_params.height = hh;
+ new_params.pixel_format = params.pixel_format;
+ std::pair<TSurface, TView> pair =
+ RebuildSurface(current_surface, new_params, is_render);
+ std::optional<TView> mirage_view =
+ pair.first->EmplaceView(params, gpu_addr, candidate_size);
+ if (mirage_view)
+ return {pair.first, *mirage_view};
+ return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
+ MatchTopologyResult::FullMatch);
+ }
+ return {current_surface, *view};
+ }
+ // The next case is unsafe, so if we r in accurate GPU, just skip it
+ if (Settings::values.use_accurate_gpu_emulation) {
+ return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
+ MatchTopologyResult::FullMatch);
+ }
+ // This is the case the texture is a part of the parent.
+ if (current_surface->MatchesSubTexture(params, gpu_addr)) {
+ return RebuildSurface(current_surface, params, is_render);
+ }
+ } else {
+ // If there are many overlaps, odds are they are subtextures of the candidate
+ // surface. We try to construct a new surface based on the candidate parameters,
+ // using the overlaps. If a single overlap fails, this will fail.
+ std::optional<std::pair<TSurface, TView>> view =
+ TryReconstructSurface(overlaps, params, gpu_addr);
+ if (view) {
+ return *view;
+ }
+ }
+ // We failed all the tests, recycle the overlaps into a new texture.
+ return RecycleSurface(overlaps, params, gpu_addr, preserve_contents,
+ MatchTopologyResult::FullMatch);
+ }
+
+ std::pair<TSurface, TView> InitializeSurface(GPUVAddr gpu_addr, const SurfaceParams& params,
+ bool preserve_contents) {
+ auto new_surface{GetUncachedSurface(gpu_addr, params)};
+ Register(new_surface);
+ if (preserve_contents) {
+ LoadSurface(new_surface);
+ }
+ return {new_surface, new_surface->GetMainView()};
+ }
+
+ void LoadSurface(const TSurface& surface) {
+ staging_cache.GetBuffer(0).resize(surface->GetHostSizeInBytes());
+ surface->LoadBuffer(system.GPU().MemoryManager(), staging_cache);
+ surface->UploadTexture(staging_cache.GetBuffer(0));
+ surface->MarkAsModified(false, Tick());
+ }
+
+ void FlushSurface(const TSurface& surface) {
+ if (!surface->IsModified()) {
+ return;
+ }
+ staging_cache.GetBuffer(0).resize(surface->GetHostSizeInBytes());
+ surface->DownloadTexture(staging_cache.GetBuffer(0));
+ surface->FlushBuffer(system.GPU().MemoryManager(), staging_cache);
+ surface->MarkAsModified(false, Tick());
+ }
+
+ void RegisterInnerCache(TSurface& surface) {
+ const CacheAddr cache_addr = surface->GetCacheAddr();
+ CacheAddr start = cache_addr >> registry_page_bits;
+ const CacheAddr end = (surface->GetCacheAddrEnd() - 1) >> registry_page_bits;
+ l1_cache[cache_addr] = surface;
+ while (start <= end) {
+ registry[start].push_back(surface);
+ start++;
+ }
+ }
+
+ void UnregisterInnerCache(TSurface& surface) {
+ const CacheAddr cache_addr = surface->GetCacheAddr();
+ CacheAddr start = cache_addr >> registry_page_bits;
+ const CacheAddr end = (surface->GetCacheAddrEnd() - 1) >> registry_page_bits;
+ l1_cache.erase(cache_addr);
+ while (start <= end) {
+ auto& reg{registry[start]};
+ reg.erase(std::find(reg.begin(), reg.end(), surface));
+ start++;
+ }
+ }
+
+ std::vector<TSurface> GetSurfacesInRegion(const CacheAddr cache_addr, const std::size_t size) {
+ if (size == 0) {
+ return {};
+ }
+ const CacheAddr cache_addr_end = cache_addr + size;
+ CacheAddr start = cache_addr >> registry_page_bits;
+ const CacheAddr end = (cache_addr_end - 1) >> registry_page_bits;
+ std::vector<TSurface> surfaces;
+ while (start <= end) {
+ std::vector<TSurface>& list = registry[start];
+ for (auto& surface : list) {
+ if (!surface->IsPicked() && surface->Overlaps(cache_addr, cache_addr_end)) {
+ surface->MarkAsPicked(true);
+ surfaces.push_back(surface);
+ }
+ }
+ start++;
+ }
+ for (auto& surface : surfaces) {
+ surface->MarkAsPicked(false);
+ }
+ return surfaces;
+ }
+
+ void ReserveSurface(const SurfaceParams& params, TSurface surface) {
+ surface_reserve[params].push_back(std::move(surface));
+ }
+
+ TSurface TryGetReservedSurface(const SurfaceParams& params) {
+ auto search{surface_reserve.find(params)};
+ if (search == surface_reserve.end()) {
+ return {};
+ }
+ for (auto& surface : search->second) {
+ if (!surface->IsRegistered()) {
+ return surface;
+ }
+ }
+ return {};
+ }
+
+ constexpr PixelFormat GetSiblingFormat(PixelFormat format) const {
+ return siblings_table[static_cast<std::size_t>(format)];
+ }
+
+ struct FramebufferTargetInfo {
+ TSurface target;
+ TView view;
+ };
+
+ VideoCore::RasterizerInterface& rasterizer;
+
+ u64 ticks{};
+
+ // Guards the cache for protection conflicts.
+ bool guard_render_targets{};
+ bool guard_samplers{};
+
+ // The siblings table is for formats that can inter exchange with one another
+ // without causing issues. This is only valid when a conflict occurs on a non
+ // rendering use.
+ std::array<PixelFormat, static_cast<std::size_t>(PixelFormat::Max)> siblings_table;
+
+ // The internal Cache is different for the Texture Cache. It's based on buckets
+ // of 1MB. This fits better for the purpose of this cache as textures are normaly
+ // large in size.
+ static constexpr u64 registry_page_bits{20};
+ static constexpr u64 registry_page_size{1 << registry_page_bits};
+ std::unordered_map<CacheAddr, std::vector<TSurface>> registry;
+
+ // The L1 Cache is used for fast texture lookup before checking the overlaps
+ // This avoids calculating size and other stuffs.
+ std::unordered_map<CacheAddr, TSurface> l1_cache;
+
+ /// The surface reserve is a "backup" cache, this is where we put unique surfaces that have
+ /// previously been used. This is to prevent surfaces from being constantly created and
+ /// destroyed when used with different surface parameters.
+ std::unordered_map<SurfaceParams, std::vector<TSurface>> surface_reserve;
+ std::array<FramebufferTargetInfo, Tegra::Engines::Maxwell3D::Regs::NumRenderTargets>
+ render_targets;
+ FramebufferTargetInfo depth_buffer;
+
+ std::vector<TSurface> sampled_textures;
+
+ StagingCache staging_cache;
+ std::recursive_mutex mutex;
+};
+
+} // namespace VideoCommon