summaryrefslogtreecommitdiffstats
path: root/src/video_core/swrasterizer/rasterizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/video_core/swrasterizer/rasterizer.cpp')
-rw-r--r--src/video_core/swrasterizer/rasterizer.cpp750
1 files changed, 750 insertions, 0 deletions
diff --git a/src/video_core/swrasterizer/rasterizer.cpp b/src/video_core/swrasterizer/rasterizer.cpp
new file mode 100644
index 000000000..7557fcb89
--- /dev/null
+++ b/src/video_core/swrasterizer/rasterizer.cpp
@@ -0,0 +1,750 @@
+// Copyright 2014 Citra Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#include <algorithm>
+#include <array>
+#include <cmath>
+#include "common/assert.h"
+#include "common/bit_field.h"
+#include "common/color.h"
+#include "common/common_types.h"
+#include "common/logging/log.h"
+#include "common/math_util.h"
+#include "common/microprofile.h"
+#include "common/vector_math.h"
+#include "core/hw/gpu.h"
+#include "core/memory.h"
+#include "video_core/debug_utils/debug_utils.h"
+#include "video_core/pica_state.h"
+#include "video_core/pica_types.h"
+#include "video_core/regs_framebuffer.h"
+#include "video_core/regs_rasterizer.h"
+#include "video_core/regs_texturing.h"
+#include "video_core/shader/shader.h"
+#include "video_core/swrasterizer/framebuffer.h"
+#include "video_core/swrasterizer/rasterizer.h"
+#include "video_core/swrasterizer/texturing.h"
+#include "video_core/texture/texture_decode.h"
+#include "video_core/utils.h"
+
+namespace Pica {
+namespace Rasterizer {
+
+// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
+struct Fix12P4 {
+ Fix12P4() {}
+ Fix12P4(u16 val) : val(val) {}
+
+ static u16 FracMask() {
+ return 0xF;
+ }
+ static u16 IntMask() {
+ return (u16)~0xF;
+ }
+
+ operator u16() const {
+ return val;
+ }
+
+ bool operator<(const Fix12P4& oth) const {
+ return (u16) * this < (u16)oth;
+ }
+
+private:
+ u16 val;
+};
+
+/**
+ * Calculate signed area of the triangle spanned by the three argument vertices.
+ * The sign denotes an orientation.
+ *
+ * @todo define orientation concretely.
+ */
+static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2,
+ const Math::Vec2<Fix12P4>& vtx3) {
+ const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
+ const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
+ // TODO: There is a very small chance this will overflow for sizeof(int) == 4
+ return Math::Cross(vec1, vec2).z;
+};
+
+MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
+
+/**
+ * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
+ * culling via recursion.
+ */
+static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Vertex& v2,
+ bool reversed = false) {
+ const auto& regs = g_state.regs;
+ MICROPROFILE_SCOPE(GPU_Rasterization);
+
+ // vertex positions in rasterizer coordinates
+ static auto FloatToFix = [](float24 flt) {
+ // TODO: Rounding here is necessary to prevent garbage pixels at
+ // triangle borders. Is it that the correct solution, though?
+ return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f)));
+ };
+ static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) {
+ return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
+ };
+
+ Math::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos),
+ ScreenToRasterizerCoordinates(v1.screenpos),
+ ScreenToRasterizerCoordinates(v2.screenpos)};
+
+ if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) {
+ // Make sure we always end up with a triangle wound counter-clockwise
+ if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
+ ProcessTriangleInternal(v0, v2, v1, true);
+ return;
+ }
+ } else {
+ if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) {
+ // Reverse vertex order and use the CCW code path.
+ ProcessTriangleInternal(v0, v2, v1, true);
+ return;
+ }
+
+ // Cull away triangles which are wound clockwise.
+ if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
+ return;
+ }
+
+ u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
+ u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
+ u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
+ u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
+
+ // Convert the scissor box coordinates to 12.4 fixed point
+ u16 scissor_x1 = (u16)(regs.rasterizer.scissor_test.x1 << 4);
+ u16 scissor_y1 = (u16)(regs.rasterizer.scissor_test.y1 << 4);
+ // x2,y2 have +1 added to cover the entire sub-pixel area
+ u16 scissor_x2 = (u16)((regs.rasterizer.scissor_test.x2 + 1) << 4);
+ u16 scissor_y2 = (u16)((regs.rasterizer.scissor_test.y2 + 1) << 4);
+
+ if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) {
+ // Calculate the new bounds
+ min_x = std::max(min_x, scissor_x1);
+ min_y = std::max(min_y, scissor_y1);
+ max_x = std::min(max_x, scissor_x2);
+ max_y = std::min(max_y, scissor_y2);
+ }
+
+ min_x &= Fix12P4::IntMask();
+ min_y &= Fix12P4::IntMask();
+ max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
+ max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
+
+ // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
+ // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
+ // values which are added to the barycentric coordinates w0, w1 and w2, respectively.
+ // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
+ auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
+ const Math::Vec2<Fix12P4>& line1,
+ const Math::Vec2<Fix12P4>& line2) {
+ if (line1.y == line2.y) {
+ // just check if vertex is above us => bottom line parallel to x-axis
+ return vtx.y < line1.y;
+ } else {
+ // check if vertex is on our left => right side
+ // TODO: Not sure how likely this is to overflow
+ return (int)vtx.x < (int)line1.x +
+ ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) /
+ ((int)line2.y - (int)line1.y);
+ }
+ };
+ int bias0 =
+ IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
+ int bias1 =
+ IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
+ int bias2 =
+ IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
+
+ auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
+
+ auto textures = regs.texturing.GetTextures();
+ auto tev_stages = regs.texturing.GetTevStages();
+
+ bool stencil_action_enable =
+ g_state.regs.framebuffer.output_merger.stencil_test.enable &&
+ g_state.regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8;
+ const auto stencil_test = g_state.regs.framebuffer.output_merger.stencil_test;
+
+ // Enter rasterization loop, starting at the center of the topleft bounding box corner.
+ // TODO: Not sure if looping through x first might be faster
+ for (u16 y = min_y + 8; y < max_y; y += 0x10) {
+ for (u16 x = min_x + 8; x < max_x; x += 0x10) {
+
+ // Do not process the pixel if it's inside the scissor box and the scissor mode is set
+ // to Exclude
+ if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) {
+ if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2)
+ continue;
+ }
+
+ // Calculate the barycentric coordinates w0, w1 and w2
+ int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
+ int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
+ int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
+ int wsum = w0 + w1 + w2;
+
+ // If current pixel is not covered by the current primitive
+ if (w0 < 0 || w1 < 0 || w2 < 0)
+ continue;
+
+ auto baricentric_coordinates =
+ Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
+ float24::FromFloat32(static_cast<float>(w1)),
+ float24::FromFloat32(static_cast<float>(w2)));
+ float24 interpolated_w_inverse =
+ float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
+
+ // interpolated_z = z / w
+ float interpolated_z_over_w =
+ (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 +
+ v2.screenpos[2].ToFloat32() * w2) /
+ wsum;
+
+ // Not fully accurate. About 3 bits in precision are missing.
+ // Z-Buffer (z / w * scale + offset)
+ float depth_scale = float24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32();
+ float depth_offset =
+ float24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32();
+ float depth = interpolated_z_over_w * depth_scale + depth_offset;
+
+ // Potentially switch to W-Buffer
+ if (regs.rasterizer.depthmap_enable ==
+ Pica::RasterizerRegs::DepthBuffering::WBuffering) {
+ // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
+ depth *= interpolated_w_inverse.ToFloat32() * wsum;
+ }
+
+ // Clamp the result
+ depth = MathUtil::Clamp(depth, 0.0f, 1.0f);
+
+ // Perspective correct attribute interpolation:
+ // Attribute values cannot be calculated by simple linear interpolation since
+ // they are not linear in screen space. For example, when interpolating a
+ // texture coordinate across two vertices, something simple like
+ // u = (u0*w0 + u1*w1)/(w0+w1)
+ // will not work. However, the attribute value divided by the
+ // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
+ // in screenspace. Hence, we can linearly interpolate these two independently and
+ // calculate the interpolated attribute by dividing the results.
+ // I.e.
+ // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
+ // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
+ // u = u_over_w / one_over_w
+ //
+ // The generalization to three vertices is straightforward in baricentric coordinates.
+ auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
+ auto attr_over_w = Math::MakeVec(attr0, attr1, attr2);
+ float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
+ return interpolated_attr_over_w * interpolated_w_inverse;
+ };
+
+ Math::Vec4<u8> primary_color{
+ (u8)(
+ GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() *
+ 255),
+ (u8)(
+ GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() *
+ 255),
+ (u8)(
+ GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() *
+ 255),
+ (u8)(
+ GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() *
+ 255),
+ };
+
+ Math::Vec2<float24> uv[3];
+ uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
+ uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
+ uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
+ uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
+ uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
+ uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
+
+ Math::Vec4<u8> texture_color[3]{};
+ for (int i = 0; i < 3; ++i) {
+ const auto& texture = textures[i];
+ if (!texture.enabled)
+ continue;
+
+ DEBUG_ASSERT(0 != texture.config.address);
+
+ float24 u = uv[i].u();
+ float24 v = uv[i].v();
+
+ // Only unit 0 respects the texturing type (according to 3DBrew)
+ // TODO: Refactor so cubemaps and shadowmaps can be handled
+ if (i == 0) {
+ switch (texture.config.type) {
+ case TexturingRegs::TextureConfig::Texture2D:
+ break;
+ case TexturingRegs::TextureConfig::Projection2D: {
+ auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
+ u /= tc0_w;
+ v /= tc0_w;
+ break;
+ }
+ default:
+ // TODO: Change to LOG_ERROR when more types are handled.
+ LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type);
+ UNIMPLEMENTED();
+ break;
+ }
+ }
+
+ int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width)))
+ .ToFloat32();
+ int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height)))
+ .ToFloat32();
+
+ if ((texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder &&
+ (s < 0 || static_cast<u32>(s) >= texture.config.width)) ||
+ (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder &&
+ (t < 0 || static_cast<u32>(t) >= texture.config.height))) {
+ auto border_color = texture.config.border_color;
+ texture_color[i] = {border_color.r, border_color.g, border_color.b,
+ border_color.a};
+ } else {
+ // Textures are laid out from bottom to top, hence we invert the t coordinate.
+ // NOTE: This may not be the right place for the inversion.
+ // TODO: Check if this applies to ETC textures, too.
+ s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
+ t = texture.config.height - 1 -
+ GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
+
+ u8* texture_data =
+ Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
+ auto info =
+ Texture::TextureInfo::FromPicaRegister(texture.config, texture.format);
+
+ // TODO: Apply the min and mag filters to the texture
+ texture_color[i] = Texture::LookupTexture(texture_data, s, t, info);
+#if PICA_DUMP_TEXTURES
+ DebugUtils::DumpTexture(texture.config, texture_data);
+#endif
+ }
+ }
+
+ // Texture environment - consists of 6 stages of color and alpha combining.
+ //
+ // Color combiners take three input color values from some source (e.g. interpolated
+ // vertex color, texture color, previous stage, etc), perform some very simple
+ // operations on each of them (e.g. inversion) and then calculate the output color
+ // with some basic arithmetic. Alpha combiners can be configured separately but work
+ // analogously.
+ Math::Vec4<u8> combiner_output;
+ Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0};
+ Math::Vec4<u8> next_combiner_buffer = {
+ regs.texturing.tev_combiner_buffer_color.r,
+ regs.texturing.tev_combiner_buffer_color.g,
+ regs.texturing.tev_combiner_buffer_color.b,
+ regs.texturing.tev_combiner_buffer_color.a,
+ };
+
+ for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
+ ++tev_stage_index) {
+ const auto& tev_stage = tev_stages[tev_stage_index];
+ using Source = TexturingRegs::TevStageConfig::Source;
+
+ auto GetSource = [&](Source source) -> Math::Vec4<u8> {
+ switch (source) {
+ case Source::PrimaryColor:
+
+ // HACK: Until we implement fragment lighting, use primary_color
+ case Source::PrimaryFragmentColor:
+ return primary_color;
+
+ // HACK: Until we implement fragment lighting, use zero
+ case Source::SecondaryFragmentColor:
+ return {0, 0, 0, 0};
+
+ case Source::Texture0:
+ return texture_color[0];
+
+ case Source::Texture1:
+ return texture_color[1];
+
+ case Source::Texture2:
+ return texture_color[2];
+
+ case Source::PreviousBuffer:
+ return combiner_buffer;
+
+ case Source::Constant:
+ return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b,
+ tev_stage.const_a};
+
+ case Source::Previous:
+ return combiner_output;
+
+ default:
+ LOG_ERROR(HW_GPU, "Unknown color combiner source %d", (int)source);
+ UNIMPLEMENTED();
+ return {0, 0, 0, 0};
+ }
+ };
+
+ // color combiner
+ // NOTE: Not sure if the alpha combiner might use the color output of the previous
+ // stage as input. Hence, we currently don't directly write the result to
+ // combiner_output.rgb(), but instead store it in a temporary variable until
+ // alpha combining has been done.
+ Math::Vec3<u8> color_result[3] = {
+ GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
+ GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
+ GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)),
+ };
+ auto color_output = ColorCombine(tev_stage.color_op, color_result);
+
+ // alpha combiner
+ std::array<u8, 3> alpha_result = {{
+ GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)),
+ GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)),
+ GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3)),
+ }};
+ auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
+
+ combiner_output[0] =
+ std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
+ combiner_output[1] =
+ std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
+ combiner_output[2] =
+ std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
+ combiner_output[3] =
+ std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
+
+ combiner_buffer = next_combiner_buffer;
+
+ if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(
+ tev_stage_index)) {
+ next_combiner_buffer.r() = combiner_output.r();
+ next_combiner_buffer.g() = combiner_output.g();
+ next_combiner_buffer.b() = combiner_output.b();
+ }
+
+ if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(
+ tev_stage_index)) {
+ next_combiner_buffer.a() = combiner_output.a();
+ }
+ }
+
+ const auto& output_merger = regs.framebuffer.output_merger;
+ // TODO: Does alpha testing happen before or after stencil?
+ if (output_merger.alpha_test.enable) {
+ bool pass = false;
+
+ switch (output_merger.alpha_test.func) {
+ case FramebufferRegs::CompareFunc::Never:
+ pass = false;
+ break;
+
+ case FramebufferRegs::CompareFunc::Always:
+ pass = true;
+ break;
+
+ case FramebufferRegs::CompareFunc::Equal:
+ pass = combiner_output.a() == output_merger.alpha_test.ref;
+ break;
+
+ case FramebufferRegs::CompareFunc::NotEqual:
+ pass = combiner_output.a() != output_merger.alpha_test.ref;
+ break;
+
+ case FramebufferRegs::CompareFunc::LessThan:
+ pass = combiner_output.a() < output_merger.alpha_test.ref;
+ break;
+
+ case FramebufferRegs::CompareFunc::LessThanOrEqual:
+ pass = combiner_output.a() <= output_merger.alpha_test.ref;
+ break;
+
+ case FramebufferRegs::CompareFunc::GreaterThan:
+ pass = combiner_output.a() > output_merger.alpha_test.ref;
+ break;
+
+ case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
+ pass = combiner_output.a() >= output_merger.alpha_test.ref;
+ break;
+ }
+
+ if (!pass)
+ continue;
+ }
+
+ // Apply fog combiner
+ // Not fully accurate. We'd have to know what data type is used to
+ // store the depth etc. Using float for now until we know more
+ // about Pica datatypes
+ if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) {
+ const Math::Vec3<u8> fog_color = {
+ static_cast<u8>(regs.texturing.fog_color.r.Value()),
+ static_cast<u8>(regs.texturing.fog_color.g.Value()),
+ static_cast<u8>(regs.texturing.fog_color.b.Value()),
+ };
+
+ // Get index into fog LUT
+ float fog_index;
+ if (g_state.regs.texturing.fog_flip) {
+ fog_index = (1.0f - depth) * 128.0f;
+ } else {
+ fog_index = depth * 128.0f;
+ }
+
+ // Generate clamped fog factor from LUT for given fog index
+ float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f);
+ float fog_f = fog_index - fog_i;
+ const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)];
+ float fog_factor = (fog_lut_entry.value + fog_lut_entry.difference * fog_f) /
+ 2047.0f; // This is signed fixed point 1.11
+ fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f);
+
+ // Blend the fog
+ for (unsigned i = 0; i < 3; i++) {
+ combiner_output[i] = static_cast<u8>(fog_factor * combiner_output[i] +
+ (1.0f - fog_factor) * fog_color[i]);
+ }
+ }
+
+ u8 old_stencil = 0;
+
+ auto UpdateStencil = [stencil_test, x, y,
+ &old_stencil](Pica::FramebufferRegs::StencilAction action) {
+ u8 new_stencil =
+ PerformStencilAction(action, old_stencil, stencil_test.reference_value);
+ if (g_state.regs.framebuffer.framebuffer.allow_depth_stencil_write != 0)
+ SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) |
+ (old_stencil & ~stencil_test.write_mask));
+ };
+
+ if (stencil_action_enable) {
+ old_stencil = GetStencil(x >> 4, y >> 4);
+ u8 dest = old_stencil & stencil_test.input_mask;
+ u8 ref = stencil_test.reference_value & stencil_test.input_mask;
+
+ bool pass = false;
+ switch (stencil_test.func) {
+ case FramebufferRegs::CompareFunc::Never:
+ pass = false;
+ break;
+
+ case FramebufferRegs::CompareFunc::Always:
+ pass = true;
+ break;
+
+ case FramebufferRegs::CompareFunc::Equal:
+ pass = (ref == dest);
+ break;
+
+ case FramebufferRegs::CompareFunc::NotEqual:
+ pass = (ref != dest);
+ break;
+
+ case FramebufferRegs::CompareFunc::LessThan:
+ pass = (ref < dest);
+ break;
+
+ case FramebufferRegs::CompareFunc::LessThanOrEqual:
+ pass = (ref <= dest);
+ break;
+
+ case FramebufferRegs::CompareFunc::GreaterThan:
+ pass = (ref > dest);
+ break;
+
+ case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
+ pass = (ref >= dest);
+ break;
+ }
+
+ if (!pass) {
+ UpdateStencil(stencil_test.action_stencil_fail);
+ continue;
+ }
+ }
+
+ // Convert float to integer
+ unsigned num_bits =
+ FramebufferRegs::DepthBitsPerPixel(regs.framebuffer.framebuffer.depth_format);
+ u32 z = (u32)(depth * ((1 << num_bits) - 1));
+
+ if (output_merger.depth_test_enable) {
+ u32 ref_z = GetDepth(x >> 4, y >> 4);
+
+ bool pass = false;
+
+ switch (output_merger.depth_test_func) {
+ case FramebufferRegs::CompareFunc::Never:
+ pass = false;
+ break;
+
+ case FramebufferRegs::CompareFunc::Always:
+ pass = true;
+ break;
+
+ case FramebufferRegs::CompareFunc::Equal:
+ pass = z == ref_z;
+ break;
+
+ case FramebufferRegs::CompareFunc::NotEqual:
+ pass = z != ref_z;
+ break;
+
+ case FramebufferRegs::CompareFunc::LessThan:
+ pass = z < ref_z;
+ break;
+
+ case FramebufferRegs::CompareFunc::LessThanOrEqual:
+ pass = z <= ref_z;
+ break;
+
+ case FramebufferRegs::CompareFunc::GreaterThan:
+ pass = z > ref_z;
+ break;
+
+ case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
+ pass = z >= ref_z;
+ break;
+ }
+
+ if (!pass) {
+ if (stencil_action_enable)
+ UpdateStencil(stencil_test.action_depth_fail);
+ continue;
+ }
+ }
+
+ if (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 &&
+ output_merger.depth_write_enable) {
+
+ SetDepth(x >> 4, y >> 4, z);
+ }
+
+ // The stencil depth_pass action is executed even if depth testing is disabled
+ if (stencil_action_enable)
+ UpdateStencil(stencil_test.action_depth_pass);
+
+ auto dest = GetPixel(x >> 4, y >> 4);
+ Math::Vec4<u8> blend_output = combiner_output;
+
+ if (output_merger.alphablend_enable) {
+ auto params = output_merger.alpha_blending;
+
+ auto LookupFactor = [&](unsigned channel,
+ FramebufferRegs::BlendFactor factor) -> u8 {
+ DEBUG_ASSERT(channel < 4);
+
+ const Math::Vec4<u8> blend_const = {
+ static_cast<u8>(output_merger.blend_const.r),
+ static_cast<u8>(output_merger.blend_const.g),
+ static_cast<u8>(output_merger.blend_const.b),
+ static_cast<u8>(output_merger.blend_const.a),
+ };
+
+ switch (factor) {
+ case FramebufferRegs::BlendFactor::Zero:
+ return 0;
+
+ case FramebufferRegs::BlendFactor::One:
+ return 255;
+
+ case FramebufferRegs::BlendFactor::SourceColor:
+ return combiner_output[channel];
+
+ case FramebufferRegs::BlendFactor::OneMinusSourceColor:
+ return 255 - combiner_output[channel];
+
+ case FramebufferRegs::BlendFactor::DestColor:
+ return dest[channel];
+
+ case FramebufferRegs::BlendFactor::OneMinusDestColor:
+ return 255 - dest[channel];
+
+ case FramebufferRegs::BlendFactor::SourceAlpha:
+ return combiner_output.a();
+
+ case FramebufferRegs::BlendFactor::OneMinusSourceAlpha:
+ return 255 - combiner_output.a();
+
+ case FramebufferRegs::BlendFactor::DestAlpha:
+ return dest.a();
+
+ case FramebufferRegs::BlendFactor::OneMinusDestAlpha:
+ return 255 - dest.a();
+
+ case FramebufferRegs::BlendFactor::ConstantColor:
+ return blend_const[channel];
+
+ case FramebufferRegs::BlendFactor::OneMinusConstantColor:
+ return 255 - blend_const[channel];
+
+ case FramebufferRegs::BlendFactor::ConstantAlpha:
+ return blend_const.a();
+
+ case FramebufferRegs::BlendFactor::OneMinusConstantAlpha:
+ return 255 - blend_const.a();
+
+ case FramebufferRegs::BlendFactor::SourceAlphaSaturate:
+ // Returns 1.0 for the alpha channel
+ if (channel == 3)
+ return 255;
+ return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a()));
+
+ default:
+ LOG_CRITICAL(HW_GPU, "Unknown blend factor %x", factor);
+ UNIMPLEMENTED();
+ break;
+ }
+
+ return combiner_output[channel];
+ };
+
+ auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb),
+ LookupFactor(1, params.factor_source_rgb),
+ LookupFactor(2, params.factor_source_rgb),
+ LookupFactor(3, params.factor_source_a));
+
+ auto dstfactor = Math::MakeVec(LookupFactor(0, params.factor_dest_rgb),
+ LookupFactor(1, params.factor_dest_rgb),
+ LookupFactor(2, params.factor_dest_rgb),
+ LookupFactor(3, params.factor_dest_a));
+
+ blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor,
+ params.blend_equation_rgb);
+ blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest,
+ dstfactor, params.blend_equation_a)
+ .a();
+ } else {
+ blend_output =
+ Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
+ LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
+ LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
+ LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
+ }
+
+ const Math::Vec4<u8> result = {
+ output_merger.red_enable ? blend_output.r() : dest.r(),
+ output_merger.green_enable ? blend_output.g() : dest.g(),
+ output_merger.blue_enable ? blend_output.b() : dest.b(),
+ output_merger.alpha_enable ? blend_output.a() : dest.a(),
+ };
+
+ if (regs.framebuffer.framebuffer.allow_color_write != 0)
+ DrawPixel(x >> 4, y >> 4, result);
+ }
+ }
+}
+
+void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2) {
+ ProcessTriangleInternal(v0, v1, v2);
+}
+
+} // namespace Rasterizer
+
+} // namespace Pica