summaryrefslogtreecommitdiffstats
path: root/src/video_core/swrasterizer/rasterizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/video_core/swrasterizer/rasterizer.cpp853
1 files changed, 0 insertions, 853 deletions
diff --git a/src/video_core/swrasterizer/rasterizer.cpp b/src/video_core/swrasterizer/rasterizer.cpp
deleted file mode 100644
index 862135614..000000000
--- a/src/video_core/swrasterizer/rasterizer.cpp
+++ /dev/null
@@ -1,853 +0,0 @@
-// Copyright 2014 Citra Emulator Project
-// Licensed under GPLv2 or any later version
-// Refer to the license.txt file included.
-
-#include <algorithm>
-#include <array>
-#include <cmath>
-#include <tuple>
-#include "common/assert.h"
-#include "common/bit_field.h"
-#include "common/color.h"
-#include "common/common_types.h"
-#include "common/logging/log.h"
-#include "common/math_util.h"
-#include "common/microprofile.h"
-#include "common/quaternion.h"
-#include "common/vector_math.h"
-#include "core/hw/gpu.h"
-#include "core/memory.h"
-#include "video_core/debug_utils/debug_utils.h"
-#include "video_core/pica_state.h"
-#include "video_core/pica_types.h"
-#include "video_core/regs_framebuffer.h"
-#include "video_core/regs_rasterizer.h"
-#include "video_core/regs_texturing.h"
-#include "video_core/shader/shader.h"
-#include "video_core/swrasterizer/framebuffer.h"
-#include "video_core/swrasterizer/lighting.h"
-#include "video_core/swrasterizer/proctex.h"
-#include "video_core/swrasterizer/rasterizer.h"
-#include "video_core/swrasterizer/texturing.h"
-#include "video_core/texture/texture_decode.h"
-#include "video_core/utils.h"
-
-namespace Pica {
-namespace Rasterizer {
-
-// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
-struct Fix12P4 {
- Fix12P4() {}
- Fix12P4(u16 val) : val(val) {}
-
- static u16 FracMask() {
- return 0xF;
- }
- static u16 IntMask() {
- return (u16)~0xF;
- }
-
- operator u16() const {
- return val;
- }
-
- bool operator<(const Fix12P4& oth) const {
- return (u16) * this < (u16)oth;
- }
-
-private:
- u16 val;
-};
-
-/**
- * Calculate signed area of the triangle spanned by the three argument vertices.
- * The sign denotes an orientation.
- *
- * @todo define orientation concretely.
- */
-static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2,
- const Math::Vec2<Fix12P4>& vtx3) {
- const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
- const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
- // TODO: There is a very small chance this will overflow for sizeof(int) == 4
- return Math::Cross(vec1, vec2).z;
-};
-
-/// Convert a 3D vector for cube map coordinates to 2D texture coordinates along with the face name
-static std::tuple<float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v, float24 w,
- const TexturingRegs& regs) {
- const float abs_u = std::abs(u.ToFloat32());
- const float abs_v = std::abs(v.ToFloat32());
- const float abs_w = std::abs(w.ToFloat32());
- float24 x, y, z;
- PAddr addr;
- if (abs_u > abs_v && abs_u > abs_w) {
- if (u > float24::FromFloat32(0)) {
- addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveX);
- y = -v;
- } else {
- addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeX);
- y = v;
- }
- x = -w;
- z = u;
- } else if (abs_v > abs_w) {
- if (v > float24::FromFloat32(0)) {
- addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveY);
- x = u;
- } else {
- addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeY);
- x = -u;
- }
- y = w;
- z = v;
- } else {
- if (w > float24::FromFloat32(0)) {
- addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveZ);
- y = -v;
- } else {
- addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeZ);
- y = v;
- }
- x = u;
- z = w;
- }
- const float24 half = float24::FromFloat32(0.5f);
- return std::make_tuple(x / z * half + half, y / z * half + half, addr);
-}
-
-MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
-
-/**
- * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
- * culling via recursion.
- */
-static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Vertex& v2,
- bool reversed = false) {
- const auto& regs = g_state.regs;
- MICROPROFILE_SCOPE(GPU_Rasterization);
-
- // vertex positions in rasterizer coordinates
- static auto FloatToFix = [](float24 flt) {
- // TODO: Rounding here is necessary to prevent garbage pixels at
- // triangle borders. Is it that the correct solution, though?
- return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f)));
- };
- static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) {
- return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
- };
-
- Math::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos),
- ScreenToRasterizerCoordinates(v1.screenpos),
- ScreenToRasterizerCoordinates(v2.screenpos)};
-
- if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) {
- // Make sure we always end up with a triangle wound counter-clockwise
- if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
- ProcessTriangleInternal(v0, v2, v1, true);
- return;
- }
- } else {
- if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) {
- // Reverse vertex order and use the CCW code path.
- ProcessTriangleInternal(v0, v2, v1, true);
- return;
- }
-
- // Cull away triangles which are wound clockwise.
- if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
- return;
- }
-
- u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
- u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
- u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
- u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
-
- // Convert the scissor box coordinates to 12.4 fixed point
- u16 scissor_x1 = (u16)(regs.rasterizer.scissor_test.x1 << 4);
- u16 scissor_y1 = (u16)(regs.rasterizer.scissor_test.y1 << 4);
- // x2,y2 have +1 added to cover the entire sub-pixel area
- u16 scissor_x2 = (u16)((regs.rasterizer.scissor_test.x2 + 1) << 4);
- u16 scissor_y2 = (u16)((regs.rasterizer.scissor_test.y2 + 1) << 4);
-
- if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) {
- // Calculate the new bounds
- min_x = std::max(min_x, scissor_x1);
- min_y = std::max(min_y, scissor_y1);
- max_x = std::min(max_x, scissor_x2);
- max_y = std::min(max_y, scissor_y2);
- }
-
- min_x &= Fix12P4::IntMask();
- min_y &= Fix12P4::IntMask();
- max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
- max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
-
- // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
- // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
- // values which are added to the barycentric coordinates w0, w1 and w2, respectively.
- // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
- auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
- const Math::Vec2<Fix12P4>& line1,
- const Math::Vec2<Fix12P4>& line2) {
- if (line1.y == line2.y) {
- // just check if vertex is above us => bottom line parallel to x-axis
- return vtx.y < line1.y;
- } else {
- // check if vertex is on our left => right side
- // TODO: Not sure how likely this is to overflow
- return (int)vtx.x < (int)line1.x +
- ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) /
- ((int)line2.y - (int)line1.y);
- }
- };
- int bias0 =
- IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
- int bias1 =
- IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
- int bias2 =
- IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
-
- auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
-
- auto textures = regs.texturing.GetTextures();
- auto tev_stages = regs.texturing.GetTevStages();
-
- bool stencil_action_enable =
- g_state.regs.framebuffer.output_merger.stencil_test.enable &&
- g_state.regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8;
- const auto stencil_test = g_state.regs.framebuffer.output_merger.stencil_test;
-
- // Enter rasterization loop, starting at the center of the topleft bounding box corner.
- // TODO: Not sure if looping through x first might be faster
- for (u16 y = min_y + 8; y < max_y; y += 0x10) {
- for (u16 x = min_x + 8; x < max_x; x += 0x10) {
-
- // Do not process the pixel if it's inside the scissor box and the scissor mode is set
- // to Exclude
- if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) {
- if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2)
- continue;
- }
-
- // Calculate the barycentric coordinates w0, w1 and w2
- int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
- int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
- int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
- int wsum = w0 + w1 + w2;
-
- // If current pixel is not covered by the current primitive
- if (w0 < 0 || w1 < 0 || w2 < 0)
- continue;
-
- auto baricentric_coordinates =
- Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
- float24::FromFloat32(static_cast<float>(w1)),
- float24::FromFloat32(static_cast<float>(w2)));
- float24 interpolated_w_inverse =
- float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
-
- // interpolated_z = z / w
- float interpolated_z_over_w =
- (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 +
- v2.screenpos[2].ToFloat32() * w2) /
- wsum;
-
- // Not fully accurate. About 3 bits in precision are missing.
- // Z-Buffer (z / w * scale + offset)
- float depth_scale = float24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32();
- float depth_offset =
- float24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32();
- float depth = interpolated_z_over_w * depth_scale + depth_offset;
-
- // Potentially switch to W-Buffer
- if (regs.rasterizer.depthmap_enable ==
- Pica::RasterizerRegs::DepthBuffering::WBuffering) {
- // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
- depth *= interpolated_w_inverse.ToFloat32() * wsum;
- }
-
- // Clamp the result
- depth = MathUtil::Clamp(depth, 0.0f, 1.0f);
-
- // Perspective correct attribute interpolation:
- // Attribute values cannot be calculated by simple linear interpolation since
- // they are not linear in screen space. For example, when interpolating a
- // texture coordinate across two vertices, something simple like
- // u = (u0*w0 + u1*w1)/(w0+w1)
- // will not work. However, the attribute value divided by the
- // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
- // in screenspace. Hence, we can linearly interpolate these two independently and
- // calculate the interpolated attribute by dividing the results.
- // I.e.
- // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
- // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
- // u = u_over_w / one_over_w
- //
- // The generalization to three vertices is straightforward in baricentric coordinates.
- auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
- auto attr_over_w = Math::MakeVec(attr0, attr1, attr2);
- float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
- return interpolated_attr_over_w * interpolated_w_inverse;
- };
-
- Math::Vec4<u8> primary_color{
- (u8)(
- GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() *
- 255),
- (u8)(
- GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() *
- 255),
- (u8)(
- GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() *
- 255),
- (u8)(
- GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() *
- 255),
- };
-
- Math::Vec2<float24> uv[3];
- uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
- uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
- uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
- uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
- uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
- uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
-
- Math::Vec4<u8> texture_color[4]{};
- for (int i = 0; i < 3; ++i) {
- const auto& texture = textures[i];
- if (!texture.enabled)
- continue;
-
- DEBUG_ASSERT(0 != texture.config.address);
-
- int coordinate_i =
- (i == 2 && regs.texturing.main_config.texture2_use_coord1) ? 1 : i;
- float24 u = uv[coordinate_i].u();
- float24 v = uv[coordinate_i].v();
-
- // Only unit 0 respects the texturing type (according to 3DBrew)
- // TODO: Refactor so cubemaps and shadowmaps can be handled
- PAddr texture_address = texture.config.GetPhysicalAddress();
- if (i == 0) {
- switch (texture.config.type) {
- case TexturingRegs::TextureConfig::Texture2D:
- break;
- case TexturingRegs::TextureConfig::TextureCube: {
- auto w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
- std::tie(u, v, texture_address) = ConvertCubeCoord(u, v, w, regs.texturing);
- break;
- }
- case TexturingRegs::TextureConfig::Projection2D: {
- auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w);
- u /= tc0_w;
- v /= tc0_w;
- break;
- }
- default:
- // TODO: Change to LOG_ERROR when more types are handled.
- LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type);
- UNIMPLEMENTED();
- break;
- }
- }
-
- int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width)))
- .ToFloat32();
- int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height)))
- .ToFloat32();
-
- bool use_border_s = false;
- bool use_border_t = false;
-
- if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder) {
- use_border_s = s < 0 || s >= static_cast<int>(texture.config.width);
- } else if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder2) {
- use_border_s = s >= static_cast<int>(texture.config.width);
- }
-
- if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder) {
- use_border_t = t < 0 || t >= static_cast<int>(texture.config.height);
- } else if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder2) {
- use_border_t = t >= static_cast<int>(texture.config.height);
- }
-
- if (use_border_s || use_border_t) {
- auto border_color = texture.config.border_color;
- texture_color[i] = {border_color.r, border_color.g, border_color.b,
- border_color.a};
- } else {
- // Textures are laid out from bottom to top, hence we invert the t coordinate.
- // NOTE: This may not be the right place for the inversion.
- // TODO: Check if this applies to ETC textures, too.
- s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
- t = texture.config.height - 1 -
- GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
-
- const u8* texture_data = Memory::GetPhysicalPointer(texture_address);
- auto info =
- Texture::TextureInfo::FromPicaRegister(texture.config, texture.format);
-
- // TODO: Apply the min and mag filters to the texture
- texture_color[i] = Texture::LookupTexture(texture_data, s, t, info);
-#if PICA_DUMP_TEXTURES
- DebugUtils::DumpTexture(texture.config, texture_data);
-#endif
- }
- }
-
- // sample procedural texture
- if (regs.texturing.main_config.texture3_enable) {
- const auto& proctex_uv = uv[regs.texturing.main_config.texture3_coordinates];
- texture_color[3] = ProcTex(proctex_uv.u().ToFloat32(), proctex_uv.v().ToFloat32(),
- g_state.regs.texturing, g_state.proctex);
- }
-
- // Texture environment - consists of 6 stages of color and alpha combining.
- //
- // Color combiners take three input color values from some source (e.g. interpolated
- // vertex color, texture color, previous stage, etc), perform some very simple
- // operations on each of them (e.g. inversion) and then calculate the output color
- // with some basic arithmetic. Alpha combiners can be configured separately but work
- // analogously.
- Math::Vec4<u8> combiner_output;
- Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0};
- Math::Vec4<u8> next_combiner_buffer = {
- regs.texturing.tev_combiner_buffer_color.r,
- regs.texturing.tev_combiner_buffer_color.g,
- regs.texturing.tev_combiner_buffer_color.b,
- regs.texturing.tev_combiner_buffer_color.a,
- };
-
- Math::Vec4<u8> primary_fragment_color = {0, 0, 0, 0};
- Math::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0};
-
- if (!g_state.regs.lighting.disable) {
- Math::Quaternion<float> normquat = Math::Quaternion<float>{
- {GetInterpolatedAttribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(),
- GetInterpolatedAttribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(),
- GetInterpolatedAttribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()},
- GetInterpolatedAttribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(),
- }.Normalized();
-
- Math::Vec3<float> view{
- GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(),
- GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(),
- GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(),
- };
- std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors(
- g_state.regs.lighting, g_state.lighting, normquat, view, texture_color);
- }
-
- for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
- ++tev_stage_index) {
- const auto& tev_stage = tev_stages[tev_stage_index];
- using Source = TexturingRegs::TevStageConfig::Source;
-
- auto GetSource = [&](Source source) -> Math::Vec4<u8> {
- switch (source) {
- case Source::PrimaryColor:
- return primary_color;
-
- case Source::PrimaryFragmentColor:
- return primary_fragment_color;
-
- case Source::SecondaryFragmentColor:
- return secondary_fragment_color;
-
- case Source::Texture0:
- return texture_color[0];
-
- case Source::Texture1:
- return texture_color[1];
-
- case Source::Texture2:
- return texture_color[2];
-
- case Source::Texture3:
- return texture_color[3];
-
- case Source::PreviousBuffer:
- return combiner_buffer;
-
- case Source::Constant:
- return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b,
- tev_stage.const_a};
-
- case Source::Previous:
- return combiner_output;
-
- default:
- LOG_ERROR(HW_GPU, "Unknown color combiner source %d", (int)source);
- UNIMPLEMENTED();
- return {0, 0, 0, 0};
- }
- };
-
- // color combiner
- // NOTE: Not sure if the alpha combiner might use the color output of the previous
- // stage as input. Hence, we currently don't directly write the result to
- // combiner_output.rgb(), but instead store it in a temporary variable until
- // alpha combining has been done.
- Math::Vec3<u8> color_result[3] = {
- GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
- GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
- GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)),
- };
- auto color_output = ColorCombine(tev_stage.color_op, color_result);
-
- u8 alpha_output;
- if (tev_stage.color_op == TexturingRegs::TevStageConfig::Operation::Dot3_RGBA) {
- // result of Dot3_RGBA operation is also placed to the alpha component
- alpha_output = color_output.x;
- } else {
- // alpha combiner
- std::array<u8, 3> alpha_result = {{
- GetAlphaModifier(tev_stage.alpha_modifier1,
- GetSource(tev_stage.alpha_source1)),
- GetAlphaModifier(tev_stage.alpha_modifier2,
- GetSource(tev_stage.alpha_source2)),
- GetAlphaModifier(tev_stage.alpha_modifier3,
- GetSource(tev_stage.alpha_source3)),
- }};
- alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
- }
-
- combiner_output[0] =
- std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
- combiner_output[1] =
- std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
- combiner_output[2] =
- std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
- combiner_output[3] =
- std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
-
- combiner_buffer = next_combiner_buffer;
-
- if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(
- tev_stage_index)) {
- next_combiner_buffer.r() = combiner_output.r();
- next_combiner_buffer.g() = combiner_output.g();
- next_combiner_buffer.b() = combiner_output.b();
- }
-
- if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(
- tev_stage_index)) {
- next_combiner_buffer.a() = combiner_output.a();
- }
- }
-
- const auto& output_merger = regs.framebuffer.output_merger;
- // TODO: Does alpha testing happen before or after stencil?
- if (output_merger.alpha_test.enable) {
- bool pass = false;
-
- switch (output_merger.alpha_test.func) {
- case FramebufferRegs::CompareFunc::Never:
- pass = false;
- break;
-
- case FramebufferRegs::CompareFunc::Always:
- pass = true;
- break;
-
- case FramebufferRegs::CompareFunc::Equal:
- pass = combiner_output.a() == output_merger.alpha_test.ref;
- break;
-
- case FramebufferRegs::CompareFunc::NotEqual:
- pass = combiner_output.a() != output_merger.alpha_test.ref;
- break;
-
- case FramebufferRegs::CompareFunc::LessThan:
- pass = combiner_output.a() < output_merger.alpha_test.ref;
- break;
-
- case FramebufferRegs::CompareFunc::LessThanOrEqual:
- pass = combiner_output.a() <= output_merger.alpha_test.ref;
- break;
-
- case FramebufferRegs::CompareFunc::GreaterThan:
- pass = combiner_output.a() > output_merger.alpha_test.ref;
- break;
-
- case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
- pass = combiner_output.a() >= output_merger.alpha_test.ref;
- break;
- }
-
- if (!pass)
- continue;
- }
-
- // Apply fog combiner
- // Not fully accurate. We'd have to know what data type is used to
- // store the depth etc. Using float for now until we know more
- // about Pica datatypes
- if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) {
- const Math::Vec3<u8> fog_color = {
- static_cast<u8>(regs.texturing.fog_color.r.Value()),
- static_cast<u8>(regs.texturing.fog_color.g.Value()),
- static_cast<u8>(regs.texturing.fog_color.b.Value()),
- };
-
- // Get index into fog LUT
- float fog_index;
- if (g_state.regs.texturing.fog_flip) {
- fog_index = (1.0f - depth) * 128.0f;
- } else {
- fog_index = depth * 128.0f;
- }
-
- // Generate clamped fog factor from LUT for given fog index
- float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f);
- float fog_f = fog_index - fog_i;
- const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)];
- float fog_factor = fog_lut_entry.ToFloat() + fog_lut_entry.DiffToFloat() * fog_f;
- fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f);
-
- // Blend the fog
- for (unsigned i = 0; i < 3; i++) {
- combiner_output[i] = static_cast<u8>(fog_factor * combiner_output[i] +
- (1.0f - fog_factor) * fog_color[i]);
- }
- }
-
- u8 old_stencil = 0;
-
- auto UpdateStencil = [stencil_test, x, y,
- &old_stencil](Pica::FramebufferRegs::StencilAction action) {
- u8 new_stencil =
- PerformStencilAction(action, old_stencil, stencil_test.reference_value);
- if (g_state.regs.framebuffer.framebuffer.allow_depth_stencil_write != 0)
- SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) |
- (old_stencil & ~stencil_test.write_mask));
- };
-
- if (stencil_action_enable) {
- old_stencil = GetStencil(x >> 4, y >> 4);
- u8 dest = old_stencil & stencil_test.input_mask;
- u8 ref = stencil_test.reference_value & stencil_test.input_mask;
-
- bool pass = false;
- switch (stencil_test.func) {
- case FramebufferRegs::CompareFunc::Never:
- pass = false;
- break;
-
- case FramebufferRegs::CompareFunc::Always:
- pass = true;
- break;
-
- case FramebufferRegs::CompareFunc::Equal:
- pass = (ref == dest);
- break;
-
- case FramebufferRegs::CompareFunc::NotEqual:
- pass = (ref != dest);
- break;
-
- case FramebufferRegs::CompareFunc::LessThan:
- pass = (ref < dest);
- break;
-
- case FramebufferRegs::CompareFunc::LessThanOrEqual:
- pass = (ref <= dest);
- break;
-
- case FramebufferRegs::CompareFunc::GreaterThan:
- pass = (ref > dest);
- break;
-
- case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
- pass = (ref >= dest);
- break;
- }
-
- if (!pass) {
- UpdateStencil(stencil_test.action_stencil_fail);
- continue;
- }
- }
-
- // Convert float to integer
- unsigned num_bits =
- FramebufferRegs::DepthBitsPerPixel(regs.framebuffer.framebuffer.depth_format);
- u32 z = (u32)(depth * ((1 << num_bits) - 1));
-
- if (output_merger.depth_test_enable) {
- u32 ref_z = GetDepth(x >> 4, y >> 4);
-
- bool pass = false;
-
- switch (output_merger.depth_test_func) {
- case FramebufferRegs::CompareFunc::Never:
- pass = false;
- break;
-
- case FramebufferRegs::CompareFunc::Always:
- pass = true;
- break;
-
- case FramebufferRegs::CompareFunc::Equal:
- pass = z == ref_z;
- break;
-
- case FramebufferRegs::CompareFunc::NotEqual:
- pass = z != ref_z;
- break;
-
- case FramebufferRegs::CompareFunc::LessThan:
- pass = z < ref_z;
- break;
-
- case FramebufferRegs::CompareFunc::LessThanOrEqual:
- pass = z <= ref_z;
- break;
-
- case FramebufferRegs::CompareFunc::GreaterThan:
- pass = z > ref_z;
- break;
-
- case FramebufferRegs::CompareFunc::GreaterThanOrEqual:
- pass = z >= ref_z;
- break;
- }
-
- if (!pass) {
- if (stencil_action_enable)
- UpdateStencil(stencil_test.action_depth_fail);
- continue;
- }
- }
-
- if (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 &&
- output_merger.depth_write_enable) {
-
- SetDepth(x >> 4, y >> 4, z);
- }
-
- // The stencil depth_pass action is executed even if depth testing is disabled
- if (stencil_action_enable)
- UpdateStencil(stencil_test.action_depth_pass);
-
- auto dest = GetPixel(x >> 4, y >> 4);
- Math::Vec4<u8> blend_output = combiner_output;
-
- if (output_merger.alphablend_enable) {
- auto params = output_merger.alpha_blending;
-
- auto LookupFactor = [&](unsigned channel,
- FramebufferRegs::BlendFactor factor) -> u8 {
- DEBUG_ASSERT(channel < 4);
-
- const Math::Vec4<u8> blend_const = {
- static_cast<u8>(output_merger.blend_const.r),
- static_cast<u8>(output_merger.blend_const.g),
- static_cast<u8>(output_merger.blend_const.b),
- static_cast<u8>(output_merger.blend_const.a),
- };
-
- switch (factor) {
- case FramebufferRegs::BlendFactor::Zero:
- return 0;
-
- case FramebufferRegs::BlendFactor::One:
- return 255;
-
- case FramebufferRegs::BlendFactor::SourceColor:
- return combiner_output[channel];
-
- case FramebufferRegs::BlendFactor::OneMinusSourceColor:
- return 255 - combiner_output[channel];
-
- case FramebufferRegs::BlendFactor::DestColor:
- return dest[channel];
-
- case FramebufferRegs::BlendFactor::OneMinusDestColor:
- return 255 - dest[channel];
-
- case FramebufferRegs::BlendFactor::SourceAlpha:
- return combiner_output.a();
-
- case FramebufferRegs::BlendFactor::OneMinusSourceAlpha:
- return 255 - combiner_output.a();
-
- case FramebufferRegs::BlendFactor::DestAlpha:
- return dest.a();
-
- case FramebufferRegs::BlendFactor::OneMinusDestAlpha:
- return 255 - dest.a();
-
- case FramebufferRegs::BlendFactor::ConstantColor:
- return blend_const[channel];
-
- case FramebufferRegs::BlendFactor::OneMinusConstantColor:
- return 255 - blend_const[channel];
-
- case FramebufferRegs::BlendFactor::ConstantAlpha:
- return blend_const.a();
-
- case FramebufferRegs::BlendFactor::OneMinusConstantAlpha:
- return 255 - blend_const.a();
-
- case FramebufferRegs::BlendFactor::SourceAlphaSaturate:
- // Returns 1.0 for the alpha channel
- if (channel == 3)
- return 255;
- return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a()));
-
- default:
- LOG_CRITICAL(HW_GPU, "Unknown blend factor %x", factor);
- UNIMPLEMENTED();
- break;
- }
-
- return combiner_output[channel];
- };
-
- auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb),
- LookupFactor(1, params.factor_source_rgb),
- LookupFactor(2, params.factor_source_rgb),
- LookupFactor(3, params.factor_source_a));
-
- auto dstfactor = Math::MakeVec(LookupFactor(0, params.factor_dest_rgb),
- LookupFactor(1, params.factor_dest_rgb),
- LookupFactor(2, params.factor_dest_rgb),
- LookupFactor(3, params.factor_dest_a));
-
- blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor,
- params.blend_equation_rgb);
- blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest,
- dstfactor, params.blend_equation_a)
- .a();
- } else {
- blend_output =
- Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
- LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
- LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
- LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
- }
-
- const Math::Vec4<u8> result = {
- output_merger.red_enable ? blend_output.r() : dest.r(),
- output_merger.green_enable ? blend_output.g() : dest.g(),
- output_merger.blue_enable ? blend_output.b() : dest.b(),
- output_merger.alpha_enable ? blend_output.a() : dest.a(),
- };
-
- if (regs.framebuffer.framebuffer.allow_color_write != 0)
- DrawPixel(x >> 4, y >> 4, result);
- }
- }
-}
-
-void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2) {
- ProcessTriangleInternal(v0, v1, v2);
-}
-
-} // namespace Rasterizer
-
-} // namespace Pica