summaryrefslogtreecommitdiffstats
path: root/src/video_core/shader/async_shaders.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/video_core/shader/async_shaders.cpp')
-rw-r--r--src/video_core/shader/async_shaders.cpp221
1 files changed, 221 insertions, 0 deletions
diff --git a/src/video_core/shader/async_shaders.cpp b/src/video_core/shader/async_shaders.cpp
new file mode 100644
index 000000000..aabd62c5c
--- /dev/null
+++ b/src/video_core/shader/async_shaders.cpp
@@ -0,0 +1,221 @@
+// Copyright 2020 yuzu Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#include <condition_variable>
+#include <mutex>
+#include <thread>
+#include <vector>
+#include "video_core/engines/maxwell_3d.h"
+#include "video_core/renderer_base.h"
+#include "video_core/renderer_opengl/gl_shader_cache.h"
+#include "video_core/shader/async_shaders.h"
+
+namespace VideoCommon::Shader {
+
+AsyncShaders::AsyncShaders(Core::Frontend::EmuWindow& emu_window) : emu_window(emu_window) {}
+
+AsyncShaders::~AsyncShaders() {
+ KillWorkers();
+}
+
+void AsyncShaders::AllocateWorkers() {
+ // Max worker threads we should allow
+ constexpr u32 MAX_THREADS = 4;
+ // Deduce how many threads we can use
+ const u32 threads_used = std::thread::hardware_concurrency() / 4;
+ // Always allow at least 1 thread regardless of our settings
+ const auto max_worker_count = std::max(1U, threads_used);
+ // Don't use more than MAX_THREADS
+ const auto num_workers = std::min(max_worker_count, MAX_THREADS);
+
+ // If we already have workers queued, ignore
+ if (num_workers == worker_threads.size()) {
+ return;
+ }
+
+ // If workers already exist, clear them
+ if (!worker_threads.empty()) {
+ FreeWorkers();
+ }
+
+ // Create workers
+ for (std::size_t i = 0; i < num_workers; i++) {
+ context_list.push_back(emu_window.CreateSharedContext());
+ worker_threads.push_back(
+ std::thread(&AsyncShaders::ShaderCompilerThread, this, context_list[i].get()));
+ }
+}
+
+void AsyncShaders::FreeWorkers() {
+ // Mark all threads to quit
+ is_thread_exiting.store(true);
+ cv.notify_all();
+ for (auto& thread : worker_threads) {
+ thread.join();
+ }
+ // Clear our shared contexts
+ context_list.clear();
+
+ // Clear our worker threads
+ worker_threads.clear();
+}
+
+void AsyncShaders::KillWorkers() {
+ is_thread_exiting.store(true);
+ for (auto& thread : worker_threads) {
+ thread.detach();
+ }
+ // Clear our shared contexts
+ context_list.clear();
+
+ // Clear our worker threads
+ worker_threads.clear();
+}
+
+bool AsyncShaders::HasWorkQueued() const {
+ return !pending_queue.empty();
+}
+
+bool AsyncShaders::HasCompletedWork() const {
+ std::shared_lock lock{completed_mutex};
+ return !finished_work.empty();
+}
+
+bool AsyncShaders::IsShaderAsync(const Tegra::GPU& gpu) const {
+ const auto& regs = gpu.Maxwell3D().regs;
+
+ // If something is using depth, we can assume that games are not rendering anything which will
+ // be used one time.
+ if (regs.zeta_enable) {
+ return true;
+ }
+
+ // If games are using a small index count, we can assume these are full screen quads. Usually
+ // these shaders are only used once for building textures so we can assume they can't be built
+ // async
+ if (regs.index_array.count <= 6 || regs.vertex_buffer.count <= 6) {
+ return false;
+ }
+
+ return true;
+}
+
+std::vector<AsyncShaders::Result> AsyncShaders::GetCompletedWork() {
+ std::vector<Result> results;
+ {
+ std::unique_lock lock{completed_mutex};
+ results.assign(std::make_move_iterator(finished_work.begin()),
+ std::make_move_iterator(finished_work.end()));
+ finished_work.clear();
+ }
+ return results;
+}
+
+void AsyncShaders::QueueOpenGLShader(const OpenGL::Device& device,
+ Tegra::Engines::ShaderType shader_type, u64 uid,
+ std::vector<u64> code, std::vector<u64> code_b,
+ u32 main_offset,
+ VideoCommon::Shader::CompilerSettings compiler_settings,
+ const VideoCommon::Shader::Registry& registry,
+ VAddr cpu_addr) {
+ WorkerParams params{
+ .backend = device.UseAssemblyShaders() ? Backend::GLASM : Backend::OpenGL,
+ .device = &device,
+ .shader_type = shader_type,
+ .uid = uid,
+ .code = std::move(code),
+ .code_b = std::move(code_b),
+ .main_offset = main_offset,
+ .compiler_settings = compiler_settings,
+ .registry = registry,
+ .cpu_address = cpu_addr,
+ };
+ std::unique_lock lock(queue_mutex);
+ pending_queue.push(std::move(params));
+ cv.notify_one();
+}
+
+void AsyncShaders::QueueVulkanShader(Vulkan::VKPipelineCache* pp_cache,
+ const Vulkan::VKDevice& device, Vulkan::VKScheduler& scheduler,
+ Vulkan::VKDescriptorPool& descriptor_pool,
+ Vulkan::VKUpdateDescriptorQueue& update_descriptor_queue,
+ Vulkan::VKRenderPassCache& renderpass_cache,
+ std::vector<VkDescriptorSetLayoutBinding> bindings,
+ Vulkan::SPIRVProgram program,
+ Vulkan::GraphicsPipelineCacheKey key) {
+ WorkerParams params{
+ .backend = Backend::Vulkan,
+ .pp_cache = pp_cache,
+ .vk_device = &device,
+ .scheduler = &scheduler,
+ .descriptor_pool = &descriptor_pool,
+ .update_descriptor_queue = &update_descriptor_queue,
+ .renderpass_cache = &renderpass_cache,
+ .bindings = bindings,
+ .program = program,
+ .key = key,
+ };
+
+ std::unique_lock lock(queue_mutex);
+ pending_queue.push(std::move(params));
+ cv.notify_one();
+}
+
+void AsyncShaders::ShaderCompilerThread(Core::Frontend::GraphicsContext* context) {
+ while (!is_thread_exiting.load(std::memory_order_relaxed)) {
+ std::unique_lock lock{queue_mutex};
+ cv.wait(lock, [this] { return HasWorkQueued() || is_thread_exiting; });
+ if (is_thread_exiting) {
+ return;
+ }
+
+ // Partial lock to allow all threads to read at the same time
+ if (!HasWorkQueued()) {
+ continue;
+ }
+ // Another thread beat us, just unlock and wait for the next load
+ if (pending_queue.empty()) {
+ continue;
+ }
+
+ // Pull work from queue
+ WorkerParams work = std::move(pending_queue.front());
+ pending_queue.pop();
+ lock.unlock();
+
+ if (work.backend == Backend::OpenGL || work.backend == Backend::GLASM) {
+ const ShaderIR ir(work.code, work.main_offset, work.compiler_settings, *work.registry);
+ const auto scope = context->Acquire();
+ auto program =
+ OpenGL::BuildShader(*work.device, work.shader_type, work.uid, ir, *work.registry);
+ Result result{};
+ result.backend = work.backend;
+ result.cpu_address = work.cpu_address;
+ result.uid = work.uid;
+ result.code = std::move(work.code);
+ result.code_b = std::move(work.code_b);
+ result.shader_type = work.shader_type;
+
+ if (work.backend == Backend::OpenGL) {
+ result.program.opengl = std::move(program->source_program);
+ } else if (work.backend == Backend::GLASM) {
+ result.program.glasm = std::move(program->assembly_program);
+ }
+
+ {
+ std::unique_lock complete_lock(completed_mutex);
+ finished_work.push_back(std::move(result));
+ }
+ } else if (work.backend == Backend::Vulkan) {
+ auto pipeline = std::make_unique<Vulkan::VKGraphicsPipeline>(
+ *work.vk_device, *work.scheduler, *work.descriptor_pool,
+ *work.update_descriptor_queue, *work.renderpass_cache, work.key, work.bindings,
+ work.program);
+
+ work.pp_cache->EmplacePipeline(std::move(pipeline));
+ }
+ }
+}
+
+} // namespace VideoCommon::Shader