summaryrefslogtreecommitdiffstats
path: root/src/video_core/rasterizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--src/video_core/rasterizer.cpp457
1 files changed, 255 insertions, 202 deletions
diff --git a/src/video_core/rasterizer.cpp b/src/video_core/rasterizer.cpp
index 6f369a00e..dbdc37ce6 100644
--- a/src/video_core/rasterizer.cpp
+++ b/src/video_core/rasterizer.cpp
@@ -15,16 +15,16 @@
#include "common/microprofile.h"
#include "common/vector_math.h"
-#include "core/memory.h"
#include "core/hw/gpu.h"
+#include "core/memory.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/pica.h"
#include "video_core/pica_state.h"
#include "video_core/pica_types.h"
#include "video_core/rasterizer.h"
-#include "video_core/utils.h"
#include "video_core/shader/shader.h"
+#include "video_core/utils.h"
namespace Pica {
@@ -39,8 +39,10 @@ static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
- u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
- u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * framebuffer.width * bytes_per_pixel;
+ u32 bytes_per_pixel =
+ GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
+ u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
+ coarse_y * framebuffer.width * bytes_per_pixel;
u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset;
switch (framebuffer.color_format) {
@@ -65,7 +67,8 @@ static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
break;
default:
- LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", framebuffer.color_format.Value());
+ LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x",
+ framebuffer.color_format.Value());
UNIMPLEMENTED();
}
}
@@ -77,8 +80,10 @@ static const Math::Vec4<u8> GetPixel(int x, int y) {
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
- u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
- u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * framebuffer.width * bytes_per_pixel;
+ u32 bytes_per_pixel =
+ GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
+ u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) +
+ coarse_y * framebuffer.width * bytes_per_pixel;
u8* src_pixel = Memory::GetPhysicalPointer(addr) + src_offset;
switch (framebuffer.color_format) {
@@ -98,7 +103,8 @@ static const Math::Vec4<u8> GetPixel(int x, int y) {
return Color::DecodeRGBA4(src_pixel);
default:
- LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", framebuffer.color_format.Value());
+ LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x",
+ framebuffer.color_format.Value());
UNIMPLEMENTED();
}
@@ -120,16 +126,16 @@ static u32 GetDepth(int x, int y) {
u8* src_pixel = depth_buffer + src_offset;
switch (framebuffer.depth_format) {
- case Regs::DepthFormat::D16:
- return Color::DecodeD16(src_pixel);
- case Regs::DepthFormat::D24:
- return Color::DecodeD24(src_pixel);
- case Regs::DepthFormat::D24S8:
- return Color::DecodeD24S8(src_pixel).x;
- default:
- LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
- UNIMPLEMENTED();
- return 0;
+ case Regs::DepthFormat::D16:
+ return Color::DecodeD16(src_pixel);
+ case Regs::DepthFormat::D24:
+ return Color::DecodeD24(src_pixel);
+ case Regs::DepthFormat::D24S8:
+ return Color::DecodeD24S8(src_pixel).x;
+ default:
+ LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
+ UNIMPLEMENTED();
+ return 0;
}
}
@@ -148,12 +154,15 @@ static u8 GetStencil(int x, int y) {
u8* src_pixel = depth_buffer + src_offset;
switch (framebuffer.depth_format) {
- case Regs::DepthFormat::D24S8:
- return Color::DecodeD24S8(src_pixel).y;
+ case Regs::DepthFormat::D24S8:
+ return Color::DecodeD24S8(src_pixel).y;
- default:
- LOG_WARNING(HW_GPU, "GetStencil called for function which doesn't have a stencil component (format %u)", framebuffer.depth_format);
- return 0;
+ default:
+ LOG_WARNING(
+ HW_GPU,
+ "GetStencil called for function which doesn't have a stencil component (format %u)",
+ framebuffer.depth_format);
+ return 0;
}
}
@@ -172,22 +181,22 @@ static void SetDepth(int x, int y, u32 value) {
u8* dst_pixel = depth_buffer + dst_offset;
switch (framebuffer.depth_format) {
- case Regs::DepthFormat::D16:
- Color::EncodeD16(value, dst_pixel);
- break;
-
- case Regs::DepthFormat::D24:
- Color::EncodeD24(value, dst_pixel);
- break;
-
- case Regs::DepthFormat::D24S8:
- Color::EncodeD24X8(value, dst_pixel);
- break;
-
- default:
- LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
- UNIMPLEMENTED();
- break;
+ case Regs::DepthFormat::D16:
+ Color::EncodeD16(value, dst_pixel);
+ break;
+
+ case Regs::DepthFormat::D24:
+ Color::EncodeD24(value, dst_pixel);
+ break;
+
+ case Regs::DepthFormat::D24S8:
+ Color::EncodeD24X8(value, dst_pixel);
+ break;
+
+ default:
+ LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
+ UNIMPLEMENTED();
+ break;
}
}
@@ -206,19 +215,19 @@ static void SetStencil(int x, int y, u8 value) {
u8* dst_pixel = depth_buffer + dst_offset;
switch (framebuffer.depth_format) {
- case Pica::Regs::DepthFormat::D16:
- case Pica::Regs::DepthFormat::D24:
- // Nothing to do
- break;
-
- case Pica::Regs::DepthFormat::D24S8:
- Color::EncodeX24S8(value, dst_pixel);
- break;
-
- default:
- LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
- UNIMPLEMENTED();
- break;
+ case Pica::Regs::DepthFormat::D16:
+ case Pica::Regs::DepthFormat::D24:
+ // Nothing to do
+ break;
+
+ case Pica::Regs::DepthFormat::D24S8:
+ Color::EncodeX24S8(value, dst_pixel);
+ break;
+
+ default:
+ LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
+ UNIMPLEMENTED();
+ break;
}
}
@@ -259,18 +268,24 @@ static u8 PerformStencilAction(Regs::StencilAction action, u8 old_stencil, u8 re
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
struct Fix12P4 {
- Fix12P4() {}
- Fix12P4(u16 val) : val(val) {}
+ Fix12P4() {
+ }
+ Fix12P4(u16 val) : val(val) {
+ }
- static u16 FracMask() { return 0xF; }
- static u16 IntMask() { return (u16)~0xF; }
+ static u16 FracMask() {
+ return 0xF;
+ }
+ static u16 IntMask() {
+ return (u16)~0xF;
+ }
operator u16() const {
return val;
}
- bool operator < (const Fix12P4& oth) const {
- return (u16)*this < (u16)oth;
+ bool operator<(const Fix12P4& oth) const {
+ return (u16) * this < (u16)oth;
}
private:
@@ -283,9 +298,8 @@ private:
*
* @todo define orientation concretely.
*/
-static int SignedArea (const Math::Vec2<Fix12P4>& vtx1,
- const Math::Vec2<Fix12P4>& vtx2,
- const Math::Vec2<Fix12P4>& vtx3) {
+static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2,
+ const Math::Vec2<Fix12P4>& vtx3) {
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
@@ -298,11 +312,8 @@ MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 24
* Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
* culling via recursion.
*/
-static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
- const Shader::OutputVertex& v1,
- const Shader::OutputVertex& v2,
- bool reversed = false)
-{
+static void ProcessTriangleInternal(const Shader::OutputVertex& v0, const Shader::OutputVertex& v1,
+ const Shader::OutputVertex& v2, bool reversed = false) {
const auto& regs = g_state.regs;
MICROPROFILE_SCOPE(GPU_Rasterization);
@@ -316,9 +327,9 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
};
- Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
- ScreenToRasterizerCoordinates(v1.screenpos),
- ScreenToRasterizerCoordinates(v2.screenpos) };
+ Math::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos),
+ ScreenToRasterizerCoordinates(v1.screenpos),
+ ScreenToRasterizerCoordinates(v2.screenpos)};
if (regs.cull_mode == Regs::CullMode::KeepAll) {
// Make sure we always end up with a triangle wound counter-clockwise
@@ -344,8 +355,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
// Convert the scissor box coordinates to 12.4 fixed point
- u16 scissor_x1 = (u16)( regs.scissor_test.x1 << 4);
- u16 scissor_y1 = (u16)( regs.scissor_test.y1 << 4);
+ u16 scissor_x1 = (u16)(regs.scissor_test.x1 << 4);
+ u16 scissor_y1 = (u16)(regs.scissor_test.y1 << 4);
// x2,y2 have +1 added to cover the entire sub-pixel area
u16 scissor_x2 = (u16)((regs.scissor_test.x2 + 1) << 4);
u16 scissor_y2 = (u16)((regs.scissor_test.y2 + 1) << 4);
@@ -369,27 +380,32 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
const Math::Vec2<Fix12P4>& line1,
- const Math::Vec2<Fix12P4>& line2)
- {
+ const Math::Vec2<Fix12P4>& line2) {
if (line1.y == line2.y) {
// just check if vertex is above us => bottom line parallel to x-axis
return vtx.y < line1.y;
} else {
// check if vertex is on our left => right side
// TODO: Not sure how likely this is to overflow
- return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
+ return (int)vtx.x < (int)line1.x +
+ ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) /
+ ((int)line2.y - (int)line1.y);
}
};
- int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
- int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
- int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
+ int bias0 =
+ IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
+ int bias1 =
+ IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
+ int bias2 =
+ IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
auto textures = regs.GetTextures();
auto tev_stages = regs.GetTevStages();
- bool stencil_action_enable = g_state.regs.output_merger.stencil_test.enable && g_state.regs.framebuffer.depth_format == Regs::DepthFormat::D24S8;
+ bool stencil_action_enable = g_state.regs.output_merger.stencil_test.enable &&
+ g_state.regs.framebuffer.depth_format == Regs::DepthFormat::D24S8;
const auto stencil_test = g_state.regs.output_merger.stencil_test;
// Enter rasterization loop, starting at the center of the topleft bounding box corner.
@@ -397,10 +413,10 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
for (u16 y = min_y + 8; y < max_y; y += 0x10) {
for (u16 x = min_x + 8; x < max_x; x += 0x10) {
- // Do not process the pixel if it's inside the scissor box and the scissor mode is set to Exclude
+ // Do not process the pixel if it's inside the scissor box and the scissor mode is set
+ // to Exclude
if (regs.scissor_test.mode == Regs::ScissorMode::Exclude) {
- if (x >= scissor_x1 && x < scissor_x2 &&
- y >= scissor_y1 && y < scissor_y2)
+ if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2)
continue;
}
@@ -414,15 +430,18 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
if (w0 < 0 || w1 < 0 || w2 < 0)
continue;
- auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
- float24::FromFloat32(static_cast<float>(w1)),
- float24::FromFloat32(static_cast<float>(w2)));
- float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
+ auto baricentric_coordinates =
+ Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
+ float24::FromFloat32(static_cast<float>(w1)),
+ float24::FromFloat32(static_cast<float>(w2)));
+ float24 interpolated_w_inverse =
+ float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
// interpolated_z = z / w
- float interpolated_z_over_w = (v0.screenpos[2].ToFloat32() * w0 +
- v1.screenpos[2].ToFloat32() * w1 +
- v2.screenpos[2].ToFloat32() * w2) / wsum;
+ float interpolated_z_over_w =
+ (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 +
+ v2.screenpos[2].ToFloat32() * w2) /
+ wsum;
// Not fully accurate. About 3 bits in precision are missing.
// Z-Buffer (z / w * scale + offset)
@@ -461,11 +480,18 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
};
Math::Vec4<u8> primary_color{
- (u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
- (u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
- (u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
- (u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
- };
+ (u8)(
+ GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() *
+ 255),
+ (u8)(
+ GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() *
+ 255),
+ (u8)(
+ GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() *
+ 255),
+ (u8)(
+ GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() *
+ 255)};
Math::Vec2<float24> uv[3];
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
@@ -489,7 +515,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
// Only unit 0 respects the texturing type (according to 3DBrew)
// TODO: Refactor so cubemaps and shadowmaps can be handled
if (i == 0) {
- switch(texture.config.type) {
+ switch (texture.config.type) {
case Regs::TextureConfig::Texture2D:
break;
case Regs::TextureConfig::Projection2D: {
@@ -506,51 +532,58 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
}
}
- int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32();
- int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32();
-
+ int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width)))
+ .ToFloat32();
+ int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height)))
+ .ToFloat32();
- static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) {
+ static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val,
+ unsigned size) {
switch (mode) {
- case Regs::TextureConfig::ClampToEdge:
- val = std::max(val, 0);
- val = std::min(val, (int)size - 1);
- return val;
-
- case Regs::TextureConfig::ClampToBorder:
- return val;
-
- case Regs::TextureConfig::Repeat:
- return (int)((unsigned)val % size);
-
- case Regs::TextureConfig::MirroredRepeat:
- {
- unsigned int coord = ((unsigned)val % (2 * size));
- if (coord >= size)
- coord = 2 * size - 1 - coord;
- return (int)coord;
- }
-
- default:
- LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x", (int)mode);
- UNIMPLEMENTED();
- return 0;
+ case Regs::TextureConfig::ClampToEdge:
+ val = std::max(val, 0);
+ val = std::min(val, (int)size - 1);
+ return val;
+
+ case Regs::TextureConfig::ClampToBorder:
+ return val;
+
+ case Regs::TextureConfig::Repeat:
+ return (int)((unsigned)val % size);
+
+ case Regs::TextureConfig::MirroredRepeat: {
+ unsigned int coord = ((unsigned)val % (2 * size));
+ if (coord >= size)
+ coord = 2 * size - 1 - coord;
+ return (int)coord;
+ }
+
+ default:
+ LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x", (int)mode);
+ UNIMPLEMENTED();
+ return 0;
}
};
- if ((texture.config.wrap_s == Regs::TextureConfig::ClampToBorder && (s < 0 || s >= texture.config.width))
- || (texture.config.wrap_t == Regs::TextureConfig::ClampToBorder && (t < 0 || t >= texture.config.height))) {
+ if ((texture.config.wrap_s == Regs::TextureConfig::ClampToBorder &&
+ (s < 0 || s >= texture.config.width)) ||
+ (texture.config.wrap_t == Regs::TextureConfig::ClampToBorder &&
+ (t < 0 || t >= texture.config.height))) {
auto border_color = texture.config.border_color;
- texture_color[i] = { border_color.r, border_color.g, border_color.b, border_color.a };
+ texture_color[i] = {border_color.r, border_color.g, border_color.b,
+ border_color.a};
} else {
// Textures are laid out from bottom to top, hence we invert the t coordinate.
// NOTE: This may not be the right place for the inversion.
// TODO: Check if this applies to ETC textures, too.
s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
- t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
+ t = texture.config.height - 1 -
+ GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
- u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
- auto info = DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format);
+ u8* texture_data =
+ Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
+ auto info =
+ DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format);
// TODO: Apply the min and mag filters to the texture
texture_color[i] = DebugUtils::LookupTexture(texture_data, s, t, info);
@@ -571,10 +604,10 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0};
Math::Vec4<u8> next_combiner_buffer = {
regs.tev_combiner_buffer_color.r, regs.tev_combiner_buffer_color.g,
- regs.tev_combiner_buffer_color.b, regs.tev_combiner_buffer_color.a
- };
+ regs.tev_combiner_buffer_color.b, regs.tev_combiner_buffer_color.a};
- for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
+ for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
+ ++tev_stage_index) {
const auto& tev_stage = tev_stages[tev_stage_index];
using Source = Regs::TevStageConfig::Source;
using ColorModifier = Regs::TevStageConfig::ColorModifier;
@@ -606,7 +639,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
return combiner_buffer;
case Source::Constant:
- return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, tev_stage.const_a};
+ return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b,
+ tev_stage.const_a};
case Source::Previous:
return combiner_output;
@@ -618,7 +652,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
}
};
- static auto GetColorModifier = [](ColorModifier factor, const Math::Vec4<u8>& values) -> Math::Vec3<u8> {
+ static auto GetColorModifier = [](ColorModifier factor,
+ const Math::Vec4<u8>& values) -> Math::Vec3<u8> {
switch (factor) {
case ColorModifier::SourceColor:
return values.rgb();
@@ -652,7 +687,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
}
};
- static auto GetAlphaModifier = [](AlphaModifier factor, const Math::Vec4<u8>& values) -> u8 {
+ static auto GetAlphaModifier = [](AlphaModifier factor,
+ const Math::Vec4<u8>& values) -> u8 {
switch (factor) {
case AlphaModifier::SourceAlpha:
return values.a();
@@ -680,7 +716,8 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
}
};
- static auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
+ static auto ColorCombine = [](Operation op,
+ const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
switch (op) {
case Operation::Replace:
return input[0];
@@ -688,8 +725,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
case Operation::Modulate:
return ((input[0] * input[1]) / 255).Cast<u8>();
- case Operation::Add:
- {
+ case Operation::Add: {
auto result = input[0] + input[1];
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
@@ -697,10 +733,11 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
return result.Cast<u8>();
}
- case Operation::AddSigned:
- {
- // TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct
- auto result = input[0].Cast<int>() + input[1].Cast<int>() - Math::MakeVec<int>(128, 128, 128);
+ case Operation::AddSigned: {
+ // TODO(bunnei): Verify that the color conversion from (float) 0.5f to
+ // (byte) 128 is correct
+ auto result = input[0].Cast<int>() + input[1].Cast<int>() -
+ Math::MakeVec<int>(128, 128, 128);
result.r() = MathUtil::Clamp<int>(result.r(), 0, 255);
result.g() = MathUtil::Clamp<int>(result.g(), 0, 255);
result.b() = MathUtil::Clamp<int>(result.b(), 0, 255);
@@ -708,10 +745,13 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
}
case Operation::Lerp:
- return ((input[0] * input[2] + input[1] * (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / 255).Cast<u8>();
+ return ((input[0] * input[2] +
+ input[1] *
+ (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) /
+ 255)
+ .Cast<u8>();
- case Operation::Subtract:
- {
+ case Operation::Subtract: {
auto result = input[0].Cast<int>() - input[1].Cast<int>();
result.r() = std::max(0, result.r());
result.g() = std::max(0, result.g());
@@ -719,8 +759,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
return result.Cast<u8>();
}
- case Operation::MultiplyThenAdd:
- {
+ case Operation::MultiplyThenAdd: {
auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255;
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
@@ -728,8 +767,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
return result.Cast<u8>();
}
- case Operation::AddThenMultiply:
- {
+ case Operation::AddThenMultiply: {
auto result = input[0] + input[1];
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
@@ -737,17 +775,19 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
result = (result * input[2].Cast<int>()) / 255;
return result.Cast<u8>();
}
- case Operation::Dot3_RGB:
- {
+ case Operation::Dot3_RGB: {
// Not fully accurate.
// Worst case scenario seems to yield a +/-3 error
- // Some HW results indicate that the per-component computation can't have a higher precision than 1/256,
- // while dot3_rgb( (0x80,g0,b0),(0x7F,g1,b1) ) and dot3_rgb( (0x80,g0,b0),(0x80,g1,b1) ) give different results
- int result = ((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 +
- ((input[0].g() * 2 - 255) * (input[1].g() * 2 - 255) + 128) / 256 +
- ((input[0].b() * 2 - 255) * (input[1].b() * 2 - 255) + 128) / 256;
+ // Some HW results indicate that the per-component computation can't have a
+ // higher precision than 1/256,
+ // while dot3_rgb( (0x80,g0,b0),(0x7F,g1,b1) ) and dot3_rgb(
+ // (0x80,g0,b0),(0x80,g1,b1) ) give different results
+ int result =
+ ((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 +
+ ((input[0].g() * 2 - 255) * (input[1].g() * 2 - 255) + 128) / 256 +
+ ((input[0].b() * 2 - 255) * (input[1].b() * 2 - 255) + 128) / 256;
result = std::max(0, std::min(255, result));
- return { (u8)result, (u8)result, (u8)result };
+ return {(u8)result, (u8)result, (u8)result};
}
default:
LOG_ERROR(HW_GPU, "Unknown color combiner operation %d", (int)op);
@@ -756,7 +796,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
}
};
- static auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 {
+ static auto AlphaCombine = [](Operation op, const std::array<u8, 3>& input) -> u8 {
switch (op) {
case Operation::Replace:
return input[0];
@@ -767,9 +807,9 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
case Operation::Add:
return std::min(255, input[0] + input[1]);
- case Operation::AddSigned:
- {
- // TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct
+ case Operation::AddSigned: {
+ // TODO(bunnei): Verify that the color conversion from (float) 0.5f to
+ // (byte) 128 is correct
auto result = static_cast<int>(input[0]) + static_cast<int>(input[1]) - 128;
return static_cast<u8>(MathUtil::Clamp<int>(result, 0, 255));
}
@@ -801,32 +841,40 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
Math::Vec3<u8> color_result[3] = {
GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
- GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3))
- };
+ GetColorModifier(tev_stage.color_modifier3,
+ GetSource(tev_stage.color_source3))};
auto color_output = ColorCombine(tev_stage.color_op, color_result);
// alpha combiner
- std::array<u8,3> alpha_result = {{
- GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)),
- GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)),
- GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3))
- }};
+ std::array<u8, 3> alpha_result = {
+ {GetAlphaModifier(tev_stage.alpha_modifier1,
+ GetSource(tev_stage.alpha_source1)),
+ GetAlphaModifier(tev_stage.alpha_modifier2,
+ GetSource(tev_stage.alpha_source2)),
+ GetAlphaModifier(tev_stage.alpha_modifier3,
+ GetSource(tev_stage.alpha_source3))}};
auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
- combiner_output[0] = std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
- combiner_output[1] = std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
- combiner_output[2] = std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
- combiner_output[3] = std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
+ combiner_output[0] =
+ std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
+ combiner_output[1] =
+ std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
+ combiner_output[2] =
+ std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
+ combiner_output[3] =
+ std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
combiner_buffer = next_combiner_buffer;
- if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_index)) {
+ if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(
+ tev_stage_index)) {
next_combiner_buffer.r() = combiner_output.r();
next_combiner_buffer.g() = combiner_output.g();
next_combiner_buffer.b() = combiner_output.b();
}
- if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_index)) {
+ if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(
+ tev_stage_index)) {
next_combiner_buffer.a() = combiner_output.a();
}
}
@@ -897,21 +945,26 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f);
float fog_f = fog_index - fog_i;
const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)];
- float fog_factor = (fog_lut_entry.value + fog_lut_entry.difference * fog_f) / 2047.0f; // This is signed fixed point 1.11
+ float fog_factor = (fog_lut_entry.value + fog_lut_entry.difference * fog_f) /
+ 2047.0f; // This is signed fixed point 1.11
fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f);
// Blend the fog
for (unsigned i = 0; i < 3; i++) {
- combiner_output[i] = fog_factor * combiner_output[i] + (1.0f - fog_factor) * fog_color[i];
+ combiner_output[i] =
+ fog_factor * combiner_output[i] + (1.0f - fog_factor) * fog_color[i];
}
}
u8 old_stencil = 0;
- auto UpdateStencil = [stencil_test, x, y, &old_stencil](Pica::Regs::StencilAction action) {
- u8 new_stencil = PerformStencilAction(action, old_stencil, stencil_test.reference_value);
+ auto UpdateStencil = [stencil_test, x, y,
+ &old_stencil](Pica::Regs::StencilAction action) {
+ u8 new_stencil =
+ PerformStencilAction(action, old_stencil, stencil_test.reference_value);
if (g_state.regs.framebuffer.allow_depth_stencil_write != 0)
- SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) | (old_stencil & ~stencil_test.write_mask));
+ SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) |
+ (old_stencil & ~stencil_test.write_mask));
};
if (stencil_action_enable) {
@@ -1030,8 +1083,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
static_cast<u8>(output_merger.blend_const.r),
static_cast<u8>(output_merger.blend_const.g),
static_cast<u8>(output_merger.blend_const.b),
- static_cast<u8>(output_merger.blend_const.a)
- };
+ static_cast<u8>(output_merger.blend_const.a)};
switch (factor) {
case Regs::BlendFactor::Zero:
@@ -1091,12 +1143,13 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
return combiner_output[channel];
};
- static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor,
- const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor,
- Regs::BlendEquation equation) {
+ static auto EvaluateBlendEquation = [](
+ const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor,
+ const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor,
+ Regs::BlendEquation equation) {
Math::Vec4<int> result;
- auto src_result = (src * srcfactor).Cast<int>();
+ auto src_result = (src * srcfactor).Cast<int>();
auto dst_result = (dest * destfactor).Cast<int>();
switch (equation) {
@@ -1134,10 +1187,9 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
UNIMPLEMENTED();
}
- return Math::Vec4<u8>(MathUtil::Clamp(result.r(), 0, 255),
- MathUtil::Clamp(result.g(), 0, 255),
- MathUtil::Clamp(result.b(), 0, 255),
- MathUtil::Clamp(result.a(), 0, 255));
+ return Math::Vec4<u8>(
+ MathUtil::Clamp(result.r(), 0, 255), MathUtil::Clamp(result.g(), 0, 255),
+ MathUtil::Clamp(result.b(), 0, 255), MathUtil::Clamp(result.a(), 0, 255));
};
auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb),
@@ -1150,8 +1202,11 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
LookupFactor(2, params.factor_dest_rgb),
LookupFactor(3, params.factor_dest_a));
- blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb);
- blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a();
+ blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor,
+ params.blend_equation_rgb);
+ blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest,
+ dstfactor, params.blend_equation_a)
+ .a();
} else {
static auto LogicOp = [](u8 src, u8 dest, Regs::LogicOp op) -> u8 {
switch (op) {
@@ -1205,19 +1260,18 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
}
};
- blend_output = Math::MakeVec(
- LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
- LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
- LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
- LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
+ blend_output =
+ Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
+ LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
+ LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
+ LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
}
- const Math::Vec4<u8> result = {
- output_merger.red_enable ? blend_output.r() : dest.r(),
- output_merger.green_enable ? blend_output.g() : dest.g(),
- output_merger.blue_enable ? blend_output.b() : dest.b(),
- output_merger.alpha_enable ? blend_output.a() : dest.a()
- };
+ const Math::Vec4<u8> result = {output_merger.red_enable ? blend_output.r() : dest.r(),
+ output_merger.green_enable ? blend_output.g() : dest.g(),
+ output_merger.blue_enable ? blend_output.b() : dest.b(),
+ output_merger.alpha_enable ? blend_output.a()
+ : dest.a()};
if (regs.framebuffer.allow_color_write != 0)
DrawPixel(x >> 4, y >> 4, result);
@@ -1225,8 +1279,7 @@ static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
}
}
-void ProcessTriangle(const Shader::OutputVertex& v0,
- const Shader::OutputVertex& v1,
+void ProcessTriangle(const Shader::OutputVertex& v0, const Shader::OutputVertex& v1,
const Shader::OutputVertex& v2) {
ProcessTriangleInternal(v0, v1, v2);
}