diff options
Diffstat (limited to '')
-rw-r--r-- | externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h | 1199 |
1 files changed, 1199 insertions, 0 deletions
diff --git a/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h b/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h new file mode 100644 index 000000000..15ecfde5c --- /dev/null +++ b/externals/FidelityFX-FSR/ffx-fsr/ffx_fsr1.h @@ -0,0 +1,1199 @@ +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// +// AMD FidelityFX SUPER RESOLUTION [FSR 1] ::: SPATIAL SCALING & EXTRAS - v1.20210629 +// +// +//------------------------------------------------------------------------------------------------------------------------------ +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//------------------------------------------------------------------------------------------------------------------------------ +// FidelityFX Super Resolution Sample +// +// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved. +// Permission is hereby granted, free of charge, to any person obtaining a copy +// of this software and associated documentation files(the "Software"), to deal +// in the Software without restriction, including without limitation the rights +// to use, copy, modify, merge, publish, distribute, sublicense, and / or sell +// copies of the Software, and to permit persons to whom the Software is +// furnished to do so, subject to the following conditions : +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE +// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN +// THE SOFTWARE. +//------------------------------------------------------------------------------------------------------------------------------ +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//------------------------------------------------------------------------------------------------------------------------------ +// ABOUT +// ===== +// FSR is a collection of algorithms relating to generating a higher resolution image. +// This specific header focuses on single-image non-temporal image scaling, and related tools. +// +// The core functions are EASU and RCAS: +// [EASU] Edge Adaptive Spatial Upsampling ....... 1x to 4x area range spatial scaling, clamped adaptive elliptical filter. +// [RCAS] Robust Contrast Adaptive Sharpening .... A non-scaling variation on CAS. +// RCAS needs to be applied after EASU as a separate pass. +// +// Optional utility functions are: +// [LFGA] Linear Film Grain Applicator ........... Tool to apply film grain after scaling. +// [SRTM] Simple Reversible Tone-Mapper .......... Linear HDR {0 to FP16_MAX} to {0 to 1} and back. +// [TEPD] Temporal Energy Preserving Dither ...... Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. +// See each individual sub-section for inline documentation. +//------------------------------------------------------------------------------------------------------------------------------ +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//------------------------------------------------------------------------------------------------------------------------------ +// FUNCTION PERMUTATIONS +// ===================== +// *F() ..... Single item computation with 32-bit. +// *H() ..... Single item computation with 16-bit, with packing (aka two 16-bit ops in parallel) when possible. +// *Hx2() ... Processing two items in parallel with 16-bit, easier packing. +// Not all interfaces in this file have a *Hx2() form. +//============================================================================================================================== +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// FSR - [EASU] EDGE ADAPTIVE SPATIAL UPSAMPLING +// +//------------------------------------------------------------------------------------------------------------------------------ +// EASU provides a high quality spatial-only scaling at relatively low cost. +// Meaning EASU is appropiate for laptops and other low-end GPUs. +// Quality from 1x to 4x area scaling is good. +//------------------------------------------------------------------------------------------------------------------------------ +// The scalar uses a modified fast approximation to the standard lanczos(size=2) kernel. +// EASU runs in a single pass, so it applies a directionally and anisotropically adaptive radial lanczos. +// This is also kept as simple as possible to have minimum runtime. +//------------------------------------------------------------------------------------------------------------------------------ +// The lanzcos filter has negative lobes, so by itself it will introduce ringing. +// To remove all ringing, the algorithm uses the nearest 2x2 input texels as a neighborhood, +// and limits output to the minimum and maximum of that neighborhood. +//------------------------------------------------------------------------------------------------------------------------------ +// Input image requirements: +// +// Color needs to be encoded as 3 channel[red, green, blue](e.g.XYZ not supported) +// Each channel needs to be in the range[0, 1] +// Any color primaries are supported +// Display / tonemapping curve needs to be as if presenting to sRGB display or similar(e.g.Gamma 2.0) +// There should be no banding in the input +// There should be no high amplitude noise in the input +// There should be no noise in the input that is not at input pixel granularity +// For performance purposes, use 32bpp formats +//------------------------------------------------------------------------------------------------------------------------------ +// Best to apply EASU at the end of the frame after tonemapping +// but before film grain or composite of the UI. +//------------------------------------------------------------------------------------------------------------------------------ +// Example of including this header for D3D HLSL : +// +// #define A_GPU 1 +// #define A_HLSL 1 +// #define A_HALF 1 +// #include "ffx_a.h" +// #define FSR_EASU_H 1 +// #define FSR_RCAS_H 1 +// //declare input callbacks +// #include "ffx_fsr1.h" +// +// Example of including this header for Vulkan GLSL : +// +// #define A_GPU 1 +// #define A_GLSL 1 +// #define A_HALF 1 +// #include "ffx_a.h" +// #define FSR_EASU_H 1 +// #define FSR_RCAS_H 1 +// //declare input callbacks +// #include "ffx_fsr1.h" +// +// Example of including this header for Vulkan HLSL : +// +// #define A_GPU 1 +// #define A_HLSL 1 +// #define A_HLSL_6_2 1 +// #define A_NO_16_BIT_CAST 1 +// #define A_HALF 1 +// #include "ffx_a.h" +// #define FSR_EASU_H 1 +// #define FSR_RCAS_H 1 +// //declare input callbacks +// #include "ffx_fsr1.h" +// +// Example of declaring the required input callbacks for GLSL : +// The callbacks need to gather4 for each color channel using the specified texture coordinate 'p'. +// EASU uses gather4 to reduce position computation logic and for free Arrays of Structures to Structures of Arrays conversion. +// +// AH4 FsrEasuRH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,0));} +// AH4 FsrEasuGH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,1));} +// AH4 FsrEasuBH(AF2 p){return AH4(textureGather(sampler2D(tex,sam),p,2));} +// ... +// The FsrEasuCon function needs to be called from the CPU or GPU to set up constants. +// The difference in viewport and input image size is there to support Dynamic Resolution Scaling. +// To use FsrEasuCon() on the CPU, define A_CPU before including ffx_a and ffx_fsr1. +// Including a GPU example here, the 'con0' through 'con3' values would be stored out to a constant buffer. +// AU4 con0,con1,con2,con3; +// FsrEasuCon(con0,con1,con2,con3, +// 1920.0,1080.0, // Viewport size (top left aligned) in the input image which is to be scaled. +// 3840.0,2160.0, // The size of the input image. +// 2560.0,1440.0); // The output resolution. +//============================================================================================================================== +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// CONSTANT SETUP +//============================================================================================================================== +// Call to setup required constant values (works on CPU or GPU). +A_STATIC void FsrEasuCon( +outAU4 con0, +outAU4 con1, +outAU4 con2, +outAU4 con3, +// This the rendered image resolution being upscaled +AF1 inputViewportInPixelsX, +AF1 inputViewportInPixelsY, +// This is the resolution of the resource containing the input image (useful for dynamic resolution) +AF1 inputSizeInPixelsX, +AF1 inputSizeInPixelsY, +// This is the display resolution which the input image gets upscaled to +AF1 outputSizeInPixelsX, +AF1 outputSizeInPixelsY){ + // Output integer position to a pixel position in viewport. + con0[0]=AU1_AF1(inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)); + con0[1]=AU1_AF1(inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)); + con0[2]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5)); + con0[3]=AU1_AF1(AF1_(0.5)*inputViewportInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5)); + // Viewport pixel position to normalized image space. + // This is used to get upper-left of 'F' tap. + con1[0]=AU1_AF1(ARcpF1(inputSizeInPixelsX)); + con1[1]=AU1_AF1(ARcpF1(inputSizeInPixelsY)); + // Centers of gather4, first offset from upper-left of 'F'. + // +---+---+ + // | | | + // +--(0)--+ + // | b | c | + // +---F---+---+---+ + // | e | f | g | h | + // +--(1)--+--(2)--+ + // | i | j | k | l | + // +---+---+---+---+ + // | n | o | + // +--(3)--+ + // | | | + // +---+---+ + con1[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX)); + con1[3]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsY)); + // These are from (0) instead of 'F'. + con2[0]=AU1_AF1(AF1_(-1.0)*ARcpF1(inputSizeInPixelsX)); + con2[1]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY)); + con2[2]=AU1_AF1(AF1_( 1.0)*ARcpF1(inputSizeInPixelsX)); + con2[3]=AU1_AF1(AF1_( 2.0)*ARcpF1(inputSizeInPixelsY)); + con3[0]=AU1_AF1(AF1_( 0.0)*ARcpF1(inputSizeInPixelsX)); + con3[1]=AU1_AF1(AF1_( 4.0)*ARcpF1(inputSizeInPixelsY)); + con3[2]=con3[3]=0;} + +//If the an offset into the input image resource +A_STATIC void FsrEasuConOffset( + outAU4 con0, + outAU4 con1, + outAU4 con2, + outAU4 con3, + // This the rendered image resolution being upscaled + AF1 inputViewportInPixelsX, + AF1 inputViewportInPixelsY, + // This is the resolution of the resource containing the input image (useful for dynamic resolution) + AF1 inputSizeInPixelsX, + AF1 inputSizeInPixelsY, + // This is the display resolution which the input image gets upscaled to + AF1 outputSizeInPixelsX, + AF1 outputSizeInPixelsY, + // This is the input image offset into the resource containing it (useful for dynamic resolution) + AF1 inputOffsetInPixelsX, + AF1 inputOffsetInPixelsY) { + FsrEasuCon(con0, con1, con2, con3, inputViewportInPixelsX, inputViewportInPixelsY, inputSizeInPixelsX, inputSizeInPixelsY, outputSizeInPixelsX, outputSizeInPixelsY); + con0[2] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsX * ARcpF1(outputSizeInPixelsX) - AF1_(0.5) + inputOffsetInPixelsX); + con0[3] = AU1_AF1(AF1_(0.5) * inputViewportInPixelsY * ARcpF1(outputSizeInPixelsY) - AF1_(0.5) + inputOffsetInPixelsY); +} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// NON-PACKED 32-BIT VERSION +//============================================================================================================================== +#if defined(A_GPU)&&defined(FSR_EASU_F) + // Input callback prototypes, need to be implemented by calling shader + AF4 FsrEasuRF(AF2 p); + AF4 FsrEasuGF(AF2 p); + AF4 FsrEasuBF(AF2 p); +//------------------------------------------------------------------------------------------------------------------------------ + // Filtering for a given tap for the scalar. + void FsrEasuTapF( + inout AF3 aC, // Accumulated color, with negative lobe. + inout AF1 aW, // Accumulated weight. + AF2 off, // Pixel offset from resolve position to tap. + AF2 dir, // Gradient direction. + AF2 len, // Length. + AF1 lob, // Negative lobe strength. + AF1 clp, // Clipping point. + AF3 c){ // Tap color. + // Rotate offset by direction. + AF2 v; + v.x=(off.x*( dir.x))+(off.y*dir.y); + v.y=(off.x*(-dir.y))+(off.y*dir.x); + // Anisotropy. + v*=len; + // Compute distance^2. + AF1 d2=v.x*v.x+v.y*v.y; + // Limit to the window as at corner, 2 taps can easily be outside. + d2=min(d2,clp); + // Approximation of lancos2 without sin() or rcp(), or sqrt() to get x. + // (25/16 * (2/5 * x^2 - 1)^2 - (25/16 - 1)) * (1/4 * x^2 - 1)^2 + // |_______________________________________| |_______________| + // base window + // The general form of the 'base' is, + // (a*(b*x^2-1)^2-(a-1)) + // Where 'a=1/(2*b-b^2)' and 'b' moves around the negative lobe. + AF1 wB=AF1_(2.0/5.0)*d2+AF1_(-1.0); + AF1 wA=lob*d2+AF1_(-1.0); + wB*=wB; + wA*=wA; + wB=AF1_(25.0/16.0)*wB+AF1_(-(25.0/16.0-1.0)); + AF1 w=wB*wA; + // Do weighted average. + aC+=c*w;aW+=w;} +//------------------------------------------------------------------------------------------------------------------------------ + // Accumulate direction and length. + void FsrEasuSetF( + inout AF2 dir, + inout AF1 len, + AF2 pp, + AP1 biS,AP1 biT,AP1 biU,AP1 biV, + AF1 lA,AF1 lB,AF1 lC,AF1 lD,AF1 lE){ + // Compute bilinear weight, branches factor out as predicates are compiler time immediates. + // s t + // u v + AF1 w = AF1_(0.0); + if(biS)w=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y); + if(biT)w= pp.x *(AF1_(1.0)-pp.y); + if(biU)w=(AF1_(1.0)-pp.x)* pp.y ; + if(biV)w= pp.x * pp.y ; + // Direction is the '+' diff. + // a + // b c d + // e + // Then takes magnitude from abs average of both sides of 'c'. + // Length converts gradient reversal to 0, smoothly to non-reversal at 1, shaped, then adding horz and vert terms. + AF1 dc=lD-lC; + AF1 cb=lC-lB; + AF1 lenX=max(abs(dc),abs(cb)); + lenX=APrxLoRcpF1(lenX); + AF1 dirX=lD-lB; + dir.x+=dirX*w; + lenX=ASatF1(abs(dirX)*lenX); + lenX*=lenX; + len+=lenX*w; + // Repeat for the y axis. + AF1 ec=lE-lC; + AF1 ca=lC-lA; + AF1 lenY=max(abs(ec),abs(ca)); + lenY=APrxLoRcpF1(lenY); + AF1 dirY=lE-lA; + dir.y+=dirY*w; + lenY=ASatF1(abs(dirY)*lenY); + lenY*=lenY; + len+=lenY*w;} +//------------------------------------------------------------------------------------------------------------------------------ + void FsrEasuF( + out AF3 pix, + AU2 ip, // Integer pixel position in output. + AU4 con0, // Constants generated by FsrEasuCon(). + AU4 con1, + AU4 con2, + AU4 con3){ +//------------------------------------------------------------------------------------------------------------------------------ + // Get position of 'f'. + AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw); + AF2 fp=floor(pp); + pp-=fp; +//------------------------------------------------------------------------------------------------------------------------------ + // 12-tap kernel. + // b c + // e f g h + // i j k l + // n o + // Gather 4 ordering. + // a b + // r g + // For packed FP16, need either {rg} or {ab} so using the following setup for gather in all versions, + // a b <- unused (z) + // r g + // a b a b + // r g r g + // a b + // r g <- unused (z) + // Allowing dead-code removal to remove the 'z's. + AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw); + // These are from p0 to avoid pulling two constants on pre-Navi hardware. + AF2 p1=p0+AF2_AU2(con2.xy); + AF2 p2=p0+AF2_AU2(con2.zw); + AF2 p3=p0+AF2_AU2(con3.xy); + AF4 bczzR=FsrEasuRF(p0); + AF4 bczzG=FsrEasuGF(p0); + AF4 bczzB=FsrEasuBF(p0); + AF4 ijfeR=FsrEasuRF(p1); + AF4 ijfeG=FsrEasuGF(p1); + AF4 ijfeB=FsrEasuBF(p1); + AF4 klhgR=FsrEasuRF(p2); + AF4 klhgG=FsrEasuGF(p2); + AF4 klhgB=FsrEasuBF(p2); + AF4 zzonR=FsrEasuRF(p3); + AF4 zzonG=FsrEasuGF(p3); + AF4 zzonB=FsrEasuBF(p3); +//------------------------------------------------------------------------------------------------------------------------------ + // Simplest multi-channel approximate luma possible (luma times 2, in 2 FMA/MAD). + AF4 bczzL=bczzB*AF4_(0.5)+(bczzR*AF4_(0.5)+bczzG); + AF4 ijfeL=ijfeB*AF4_(0.5)+(ijfeR*AF4_(0.5)+ijfeG); + AF4 klhgL=klhgB*AF4_(0.5)+(klhgR*AF4_(0.5)+klhgG); + AF4 zzonL=zzonB*AF4_(0.5)+(zzonR*AF4_(0.5)+zzonG); + // Rename. + AF1 bL=bczzL.x; + AF1 cL=bczzL.y; + AF1 iL=ijfeL.x; + AF1 jL=ijfeL.y; + AF1 fL=ijfeL.z; + AF1 eL=ijfeL.w; + AF1 kL=klhgL.x; + AF1 lL=klhgL.y; + AF1 hL=klhgL.z; + AF1 gL=klhgL.w; + AF1 oL=zzonL.z; + AF1 nL=zzonL.w; + // Accumulate for bilinear interpolation. + AF2 dir=AF2_(0.0); + AF1 len=AF1_(0.0); + FsrEasuSetF(dir,len,pp,true, false,false,false,bL,eL,fL,gL,jL); + FsrEasuSetF(dir,len,pp,false,true ,false,false,cL,fL,gL,hL,kL); + FsrEasuSetF(dir,len,pp,false,false,true ,false,fL,iL,jL,kL,nL); + FsrEasuSetF(dir,len,pp,false,false,false,true ,gL,jL,kL,lL,oL); +//------------------------------------------------------------------------------------------------------------------------------ + // Normalize with approximation, and cleanup close to zero. + AF2 dir2=dir*dir; + AF1 dirR=dir2.x+dir2.y; + AP1 zro=dirR<AF1_(1.0/32768.0); + dirR=APrxLoRsqF1(dirR); + dirR=zro?AF1_(1.0):dirR; + dir.x=zro?AF1_(1.0):dir.x; + dir*=AF2_(dirR); + // Transform from {0 to 2} to {0 to 1} range, and shape with square. + len=len*AF1_(0.5); + len*=len; + // Stretch kernel {1.0 vert|horz, to sqrt(2.0) on diagonal}. + AF1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpF1(max(abs(dir.x),abs(dir.y))); + // Anisotropic length after rotation, + // x := 1.0 lerp to 'stretch' on edges + // y := 1.0 lerp to 2x on edges + AF2 len2=AF2(AF1_(1.0)+(stretch-AF1_(1.0))*len,AF1_(1.0)+AF1_(-0.5)*len); + // Based on the amount of 'edge', + // the window shifts from +/-{sqrt(2.0) to slightly beyond 2.0}. + AF1 lob=AF1_(0.5)+AF1_((1.0/4.0-0.04)-0.5)*len; + // Set distance^2 clipping point to the end of the adjustable window. + AF1 clp=APrxLoRcpF1(lob); +//------------------------------------------------------------------------------------------------------------------------------ + // Accumulation mixed with min/max of 4 nearest. + // b c + // e f g h + // i j k l + // n o + AF3 min4=min(AMin3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)), + AF3(klhgR.x,klhgG.x,klhgB.x)); + AF3 max4=max(AMax3F3(AF3(ijfeR.z,ijfeG.z,ijfeB.z),AF3(klhgR.w,klhgG.w,klhgB.w),AF3(ijfeR.y,ijfeG.y,ijfeB.y)), + AF3(klhgR.x,klhgG.x,klhgB.x)); + // Accumulation. + AF3 aC=AF3_(0.0); + AF1 aW=AF1_(0.0); + FsrEasuTapF(aC,aW,AF2( 0.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.x,bczzG.x,bczzB.x)); // b + FsrEasuTapF(aC,aW,AF2( 1.0,-1.0)-pp,dir,len2,lob,clp,AF3(bczzR.y,bczzG.y,bczzB.y)); // c + FsrEasuTapF(aC,aW,AF2(-1.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.x,ijfeG.x,ijfeB.x)); // i + FsrEasuTapF(aC,aW,AF2( 0.0, 1.0)-pp,dir,len2,lob,clp,AF3(ijfeR.y,ijfeG.y,ijfeB.y)); // j + FsrEasuTapF(aC,aW,AF2( 0.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.z,ijfeG.z,ijfeB.z)); // f + FsrEasuTapF(aC,aW,AF2(-1.0, 0.0)-pp,dir,len2,lob,clp,AF3(ijfeR.w,ijfeG.w,ijfeB.w)); // e + FsrEasuTapF(aC,aW,AF2( 1.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.x,klhgG.x,klhgB.x)); // k + FsrEasuTapF(aC,aW,AF2( 2.0, 1.0)-pp,dir,len2,lob,clp,AF3(klhgR.y,klhgG.y,klhgB.y)); // l + FsrEasuTapF(aC,aW,AF2( 2.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.z,klhgG.z,klhgB.z)); // h + FsrEasuTapF(aC,aW,AF2( 1.0, 0.0)-pp,dir,len2,lob,clp,AF3(klhgR.w,klhgG.w,klhgB.w)); // g + FsrEasuTapF(aC,aW,AF2( 1.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.z,zzonG.z,zzonB.z)); // o + FsrEasuTapF(aC,aW,AF2( 0.0, 2.0)-pp,dir,len2,lob,clp,AF3(zzonR.w,zzonG.w,zzonB.w)); // n +//------------------------------------------------------------------------------------------------------------------------------ + // Normalize and dering. + pix=min(max4,max(min4,aC*AF3_(ARcpF1(aW))));} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// PACKED 16-BIT VERSION +//============================================================================================================================== +#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_EASU_H) +// Input callback prototypes, need to be implemented by calling shader + AH4 FsrEasuRH(AF2 p); + AH4 FsrEasuGH(AF2 p); + AH4 FsrEasuBH(AF2 p); +//------------------------------------------------------------------------------------------------------------------------------ + // This runs 2 taps in parallel. + void FsrEasuTapH( + inout AH2 aCR,inout AH2 aCG,inout AH2 aCB, + inout AH2 aW, + AH2 offX,AH2 offY, + AH2 dir, + AH2 len, + AH1 lob, + AH1 clp, + AH2 cR,AH2 cG,AH2 cB){ + AH2 vX,vY; + vX=offX* dir.xx +offY*dir.yy; + vY=offX*(-dir.yy)+offY*dir.xx; + vX*=len.x;vY*=len.y; + AH2 d2=vX*vX+vY*vY; + d2=min(d2,AH2_(clp)); + AH2 wB=AH2_(2.0/5.0)*d2+AH2_(-1.0); + AH2 wA=AH2_(lob)*d2+AH2_(-1.0); + wB*=wB; + wA*=wA; + wB=AH2_(25.0/16.0)*wB+AH2_(-(25.0/16.0-1.0)); + AH2 w=wB*wA; + aCR+=cR*w;aCG+=cG*w;aCB+=cB*w;aW+=w;} +//------------------------------------------------------------------------------------------------------------------------------ + // This runs 2 taps in parallel. + void FsrEasuSetH( + inout AH2 dirPX,inout AH2 dirPY, + inout AH2 lenP, + AH2 pp, + AP1 biST,AP1 biUV, + AH2 lA,AH2 lB,AH2 lC,AH2 lD,AH2 lE){ + AH2 w = AH2_(0.0); + if(biST)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_(AH1_(1.0)-pp.y); + if(biUV)w=(AH2(1.0,0.0)+AH2(-pp.x,pp.x))*AH2_( pp.y); + // ABS is not free in the packed FP16 path. + AH2 dc=lD-lC; + AH2 cb=lC-lB; + AH2 lenX=max(abs(dc),abs(cb)); + lenX=ARcpH2(lenX); + AH2 dirX=lD-lB; + dirPX+=dirX*w; + lenX=ASatH2(abs(dirX)*lenX); + lenX*=lenX; + lenP+=lenX*w; + AH2 ec=lE-lC; + AH2 ca=lC-lA; + AH2 lenY=max(abs(ec),abs(ca)); + lenY=ARcpH2(lenY); + AH2 dirY=lE-lA; + dirPY+=dirY*w; + lenY=ASatH2(abs(dirY)*lenY); + lenY*=lenY; + lenP+=lenY*w;} +//------------------------------------------------------------------------------------------------------------------------------ + void FsrEasuH( + out AH3 pix, + AU2 ip, + AU4 con0, + AU4 con1, + AU4 con2, + AU4 con3){ +//------------------------------------------------------------------------------------------------------------------------------ + AF2 pp=AF2(ip)*AF2_AU2(con0.xy)+AF2_AU2(con0.zw); + AF2 fp=floor(pp); + pp-=fp; + AH2 ppp=AH2(pp); +//------------------------------------------------------------------------------------------------------------------------------ + AF2 p0=fp*AF2_AU2(con1.xy)+AF2_AU2(con1.zw); + AF2 p1=p0+AF2_AU2(con2.xy); + AF2 p2=p0+AF2_AU2(con2.zw); + AF2 p3=p0+AF2_AU2(con3.xy); + AH4 bczzR=FsrEasuRH(p0); + AH4 bczzG=FsrEasuGH(p0); + AH4 bczzB=FsrEasuBH(p0); + AH4 ijfeR=FsrEasuRH(p1); + AH4 ijfeG=FsrEasuGH(p1); + AH4 ijfeB=FsrEasuBH(p1); + AH4 klhgR=FsrEasuRH(p2); + AH4 klhgG=FsrEasuGH(p2); + AH4 klhgB=FsrEasuBH(p2); + AH4 zzonR=FsrEasuRH(p3); + AH4 zzonG=FsrEasuGH(p3); + AH4 zzonB=FsrEasuBH(p3); +//------------------------------------------------------------------------------------------------------------------------------ + AH4 bczzL=bczzB*AH4_(0.5)+(bczzR*AH4_(0.5)+bczzG); + AH4 ijfeL=ijfeB*AH4_(0.5)+(ijfeR*AH4_(0.5)+ijfeG); + AH4 klhgL=klhgB*AH4_(0.5)+(klhgR*AH4_(0.5)+klhgG); + AH4 zzonL=zzonB*AH4_(0.5)+(zzonR*AH4_(0.5)+zzonG); + AH1 bL=bczzL.x; + AH1 cL=bczzL.y; + AH1 iL=ijfeL.x; + AH1 jL=ijfeL.y; + AH1 fL=ijfeL.z; + AH1 eL=ijfeL.w; + AH1 kL=klhgL.x; + AH1 lL=klhgL.y; + AH1 hL=klhgL.z; + AH1 gL=klhgL.w; + AH1 oL=zzonL.z; + AH1 nL=zzonL.w; + // This part is different, accumulating 2 taps in parallel. + AH2 dirPX=AH2_(0.0); + AH2 dirPY=AH2_(0.0); + AH2 lenP=AH2_(0.0); + FsrEasuSetH(dirPX,dirPY,lenP,ppp,true, false,AH2(bL,cL),AH2(eL,fL),AH2(fL,gL),AH2(gL,hL),AH2(jL,kL)); + FsrEasuSetH(dirPX,dirPY,lenP,ppp,false,true ,AH2(fL,gL),AH2(iL,jL),AH2(jL,kL),AH2(kL,lL),AH2(nL,oL)); + AH2 dir=AH2(dirPX.r+dirPX.g,dirPY.r+dirPY.g); + AH1 len=lenP.r+lenP.g; +//------------------------------------------------------------------------------------------------------------------------------ + AH2 dir2=dir*dir; + AH1 dirR=dir2.x+dir2.y; + AP1 zro=dirR<AH1_(1.0/32768.0); + dirR=APrxLoRsqH1(dirR); + dirR=zro?AH1_(1.0):dirR; + dir.x=zro?AH1_(1.0):dir.x; + dir*=AH2_(dirR); + len=len*AH1_(0.5); + len*=len; + AH1 stretch=(dir.x*dir.x+dir.y*dir.y)*APrxLoRcpH1(max(abs(dir.x),abs(dir.y))); + AH2 len2=AH2(AH1_(1.0)+(stretch-AH1_(1.0))*len,AH1_(1.0)+AH1_(-0.5)*len); + AH1 lob=AH1_(0.5)+AH1_((1.0/4.0-0.04)-0.5)*len; + AH1 clp=APrxLoRcpH1(lob); +//------------------------------------------------------------------------------------------------------------------------------ + // FP16 is different, using packed trick to do min and max in same operation. + AH2 bothR=max(max(AH2(-ijfeR.z,ijfeR.z),AH2(-klhgR.w,klhgR.w)),max(AH2(-ijfeR.y,ijfeR.y),AH2(-klhgR.x,klhgR.x))); + AH2 bothG=max(max(AH2(-ijfeG.z,ijfeG.z),AH2(-klhgG.w,klhgG.w)),max(AH2(-ijfeG.y,ijfeG.y),AH2(-klhgG.x,klhgG.x))); + AH2 bothB=max(max(AH2(-ijfeB.z,ijfeB.z),AH2(-klhgB.w,klhgB.w)),max(AH2(-ijfeB.y,ijfeB.y),AH2(-klhgB.x,klhgB.x))); + // This part is different for FP16, working pairs of taps at a time. + AH2 pR=AH2_(0.0); + AH2 pG=AH2_(0.0); + AH2 pB=AH2_(0.0); + AH2 pW=AH2_(0.0); + FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0, 1.0)-ppp.xx,AH2(-1.0,-1.0)-ppp.yy,dir,len2,lob,clp,bczzR.xy,bczzG.xy,bczzB.xy); + FsrEasuTapH(pR,pG,pB,pW,AH2(-1.0, 0.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,ijfeR.xy,ijfeG.xy,ijfeB.xy); + FsrEasuTapH(pR,pG,pB,pW,AH2( 0.0,-1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,ijfeR.zw,ijfeG.zw,ijfeB.zw); + FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 2.0)-ppp.xx,AH2( 1.0, 1.0)-ppp.yy,dir,len2,lob,clp,klhgR.xy,klhgG.xy,klhgB.xy); + FsrEasuTapH(pR,pG,pB,pW,AH2( 2.0, 1.0)-ppp.xx,AH2( 0.0, 0.0)-ppp.yy,dir,len2,lob,clp,klhgR.zw,klhgG.zw,klhgB.zw); + FsrEasuTapH(pR,pG,pB,pW,AH2( 1.0, 0.0)-ppp.xx,AH2( 2.0, 2.0)-ppp.yy,dir,len2,lob,clp,zzonR.zw,zzonG.zw,zzonB.zw); + AH3 aC=AH3(pR.x+pR.y,pG.x+pG.y,pB.x+pB.y); + AH1 aW=pW.x+pW.y; +//------------------------------------------------------------------------------------------------------------------------------ + // Slightly different for FP16 version due to combined min and max. + pix=min(AH3(bothR.y,bothG.y,bothB.y),max(-AH3(bothR.x,bothG.x,bothB.x),aC*AH3_(ARcpH1(aW))));} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// FSR - [RCAS] ROBUST CONTRAST ADAPTIVE SHARPENING +// +//------------------------------------------------------------------------------------------------------------------------------ +// CAS uses a simplified mechanism to convert local contrast into a variable amount of sharpness. +// RCAS uses a more exact mechanism, solving for the maximum local sharpness possible before clipping. +// RCAS also has a built in process to limit sharpening of what it detects as possible noise. +// RCAS sharper does not support scaling, as it should be applied after EASU scaling. +// Pass EASU output straight into RCAS, no color conversions necessary. +//------------------------------------------------------------------------------------------------------------------------------ +// RCAS is based on the following logic. +// RCAS uses a 5 tap filter in a cross pattern (same as CAS), +// w n +// w 1 w for taps w m e +// w s +// Where 'w' is the negative lobe weight. +// output = (w*(n+e+w+s)+m)/(4*w+1) +// RCAS solves for 'w' by seeing where the signal might clip out of the {0 to 1} input range, +// 0 == (w*(n+e+w+s)+m)/(4*w+1) -> w = -m/(n+e+w+s) +// 1 == (w*(n+e+w+s)+m)/(4*w+1) -> w = (1-m)/(n+e+w+s-4*1) +// Then chooses the 'w' which results in no clipping, limits 'w', and multiplies by the 'sharp' amount. +// This solution above has issues with MSAA input as the steps along the gradient cause edge detection issues. +// So RCAS uses 4x the maximum and 4x the minimum (depending on equation)in place of the individual taps. +// As well as switching from 'm' to either the minimum or maximum (depending on side), to help in energy conservation. +// This stabilizes RCAS. +// RCAS does a simple highpass which is normalized against the local contrast then shaped, +// 0.25 +// 0.25 -1 0.25 +// 0.25 +// This is used as a noise detection filter, to reduce the effect of RCAS on grain, and focus on real edges. +// +// GLSL example for the required callbacks : +// +// AH4 FsrRcasLoadH(ASW2 p){return AH4(imageLoad(imgSrc,ASU2(p)));} +// void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b) +// { +// //do any simple input color conversions here or leave empty if none needed +// } +// +// FsrRcasCon need to be called from the CPU or GPU to set up constants. +// Including a GPU example here, the 'con' value would be stored out to a constant buffer. +// +// AU4 con; +// FsrRcasCon(con, +// 0.0); // The scale is {0.0 := maximum sharpness, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. +// --------------- +// RCAS sharpening supports a CAS-like pass-through alpha via, +// #define FSR_RCAS_PASSTHROUGH_ALPHA 1 +// RCAS also supports a define to enable a more expensive path to avoid some sharpening of noise. +// Would suggest it is better to apply film grain after RCAS sharpening (and after scaling) instead of using this define, +// #define FSR_RCAS_DENOISE 1 +//============================================================================================================================== +// This is set at the limit of providing unnatural results for sharpening. +#define FSR_RCAS_LIMIT (0.25-(1.0/16.0)) +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// CONSTANT SETUP +//============================================================================================================================== +// Call to setup required constant values (works on CPU or GPU). +A_STATIC void FsrRcasCon( +outAU4 con, +// The scale is {0.0 := maximum, to N>0, where N is the number of stops (halving) of the reduction of sharpness}. +AF1 sharpness){ + // Transform from stops to linear value. + sharpness=AExp2F1(-sharpness); + varAF2(hSharp)=initAF2(sharpness,sharpness); + con[0]=AU1_AF1(sharpness); + con[1]=AU1_AH2_AF2(hSharp); + con[2]=0; + con[3]=0;} +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// NON-PACKED 32-BIT VERSION +//============================================================================================================================== +#if defined(A_GPU)&&defined(FSR_RCAS_F) + // Input callback prototypes that need to be implemented by calling shader + AF4 FsrRcasLoadF(ASU2 p); + void FsrRcasInputF(inout AF1 r,inout AF1 g,inout AF1 b); +//------------------------------------------------------------------------------------------------------------------------------ + void FsrRcasF( + out AF1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. + out AF1 pixG, + out AF1 pixB, + #ifdef FSR_RCAS_PASSTHROUGH_ALPHA + out AF1 pixA, + #endif + AU2 ip, // Integer pixel position in output. + AU4 con){ // Constant generated by RcasSetup(). + // Algorithm uses minimal 3x3 pixel neighborhood. + // b + // d e f + // h + ASU2 sp=ASU2(ip); + AF3 b=FsrRcasLoadF(sp+ASU2( 0,-1)).rgb; + AF3 d=FsrRcasLoadF(sp+ASU2(-1, 0)).rgb; + #ifdef FSR_RCAS_PASSTHROUGH_ALPHA + AF4 ee=FsrRcasLoadF(sp); + AF3 e=ee.rgb;pixA=ee.a; + #else + AF3 e=FsrRcasLoadF(sp).rgb; + #endif + AF3 f=FsrRcasLoadF(sp+ASU2( 1, 0)).rgb; + AF3 h=FsrRcasLoadF(sp+ASU2( 0, 1)).rgb; + // Rename (32-bit) or regroup (16-bit). + AF1 bR=b.r; + AF1 bG=b.g; + AF1 bB=b.b; + AF1 dR=d.r; + AF1 dG=d.g; + AF1 dB=d.b; + AF1 eR=e.r; + AF1 eG=e.g; + AF1 eB=e.b; + AF1 fR=f.r; + AF1 fG=f.g; + AF1 fB=f.b; + AF1 hR=h.r; + AF1 hG=h.g; + AF1 hB=h.b; + // Run optional input transform. + FsrRcasInputF(bR,bG,bB); + FsrRcasInputF(dR,dG,dB); + FsrRcasInputF(eR,eG,eB); + FsrRcasInputF(fR,fG,fB); + FsrRcasInputF(hR,hG,hB); + // Luma times 2. + AF1 bL=bB*AF1_(0.5)+(bR*AF1_(0.5)+bG); + AF1 dL=dB*AF1_(0.5)+(dR*AF1_(0.5)+dG); + AF1 eL=eB*AF1_(0.5)+(eR*AF1_(0.5)+eG); + AF1 fL=fB*AF1_(0.5)+(fR*AF1_(0.5)+fG); + AF1 hL=hB*AF1_(0.5)+(hR*AF1_(0.5)+hG); + // Noise detection. + AF1 nz=AF1_(0.25)*bL+AF1_(0.25)*dL+AF1_(0.25)*fL+AF1_(0.25)*hL-eL; + nz=ASatF1(abs(nz)*APrxMedRcpF1(AMax3F1(AMax3F1(bL,dL,eL),fL,hL)-AMin3F1(AMin3F1(bL,dL,eL),fL,hL))); + nz=AF1_(-0.5)*nz+AF1_(1.0); + // Min and max of ring. + AF1 mn4R=min(AMin3F1(bR,dR,fR),hR); + AF1 mn4G=min(AMin3F1(bG,dG,fG),hG); + AF1 mn4B=min(AMin3F1(bB,dB,fB),hB); + AF1 mx4R=max(AMax3F1(bR,dR,fR),hR); + AF1 mx4G=max(AMax3F1(bG,dG,fG),hG); + AF1 mx4B=max(AMax3F1(bB,dB,fB),hB); + // Immediate constants for peak range. + AF2 peakC=AF2(1.0,-1.0*4.0); + // Limiters, these need to be high precision RCPs. + AF1 hitMinR=mn4R*ARcpF1(AF1_(4.0)*mx4R); + AF1 hitMinG=mn4G*ARcpF1(AF1_(4.0)*mx4G); + AF1 hitMinB=mn4B*ARcpF1(AF1_(4.0)*mx4B); + AF1 hitMaxR=(peakC.x-mx4R)*ARcpF1(AF1_(4.0)*mn4R+peakC.y); + AF1 hitMaxG=(peakC.x-mx4G)*ARcpF1(AF1_(4.0)*mn4G+peakC.y); + AF1 hitMaxB=(peakC.x-mx4B)*ARcpF1(AF1_(4.0)*mn4B+peakC.y); + AF1 lobeR=max(-hitMinR,hitMaxR); + AF1 lobeG=max(-hitMinG,hitMaxG); + AF1 lobeB=max(-hitMinB,hitMaxB); + AF1 lobe=max(AF1_(-FSR_RCAS_LIMIT),min(AMax3F1(lobeR,lobeG,lobeB),AF1_(0.0)))*AF1_AU1(con.x); + // Apply noise removal. + #ifdef FSR_RCAS_DENOISE + lobe*=nz; + #endif + // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. + AF1 rcpL=APrxMedRcpF1(AF1_(4.0)*lobe+AF1_(1.0)); + pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; + pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; + pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL; + return;} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// NON-PACKED 16-BIT VERSION +//============================================================================================================================== +#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_H) + // Input callback prototypes that need to be implemented by calling shader + AH4 FsrRcasLoadH(ASW2 p); + void FsrRcasInputH(inout AH1 r,inout AH1 g,inout AH1 b); +//------------------------------------------------------------------------------------------------------------------------------ + void FsrRcasH( + out AH1 pixR, // Output values, non-vector so port between RcasFilter() and RcasFilterH() is easy. + out AH1 pixG, + out AH1 pixB, + #ifdef FSR_RCAS_PASSTHROUGH_ALPHA + out AH1 pixA, + #endif + AU2 ip, // Integer pixel position in output. + AU4 con){ // Constant generated by RcasSetup(). + // Sharpening algorithm uses minimal 3x3 pixel neighborhood. + // b + // d e f + // h + ASW2 sp=ASW2(ip); + AH3 b=FsrRcasLoadH(sp+ASW2( 0,-1)).rgb; + AH3 d=FsrRcasLoadH(sp+ASW2(-1, 0)).rgb; + #ifdef FSR_RCAS_PASSTHROUGH_ALPHA + AH4 ee=FsrRcasLoadH(sp); + AH3 e=ee.rgb;pixA=ee.a; + #else + AH3 e=FsrRcasLoadH(sp).rgb; + #endif + AH3 f=FsrRcasLoadH(sp+ASW2( 1, 0)).rgb; + AH3 h=FsrRcasLoadH(sp+ASW2( 0, 1)).rgb; + // Rename (32-bit) or regroup (16-bit). + AH1 bR=b.r; + AH1 bG=b.g; + AH1 bB=b.b; + AH1 dR=d.r; + AH1 dG=d.g; + AH1 dB=d.b; + AH1 eR=e.r; + AH1 eG=e.g; + AH1 eB=e.b; + AH1 fR=f.r; + AH1 fG=f.g; + AH1 fB=f.b; + AH1 hR=h.r; + AH1 hG=h.g; + AH1 hB=h.b; + // Run optional input transform. + FsrRcasInputH(bR,bG,bB); + FsrRcasInputH(dR,dG,dB); + FsrRcasInputH(eR,eG,eB); + FsrRcasInputH(fR,fG,fB); + FsrRcasInputH(hR,hG,hB); + // Luma times 2. + AH1 bL=bB*AH1_(0.5)+(bR*AH1_(0.5)+bG); + AH1 dL=dB*AH1_(0.5)+(dR*AH1_(0.5)+dG); + AH1 eL=eB*AH1_(0.5)+(eR*AH1_(0.5)+eG); + AH1 fL=fB*AH1_(0.5)+(fR*AH1_(0.5)+fG); + AH1 hL=hB*AH1_(0.5)+(hR*AH1_(0.5)+hG); + // Noise detection. + AH1 nz=AH1_(0.25)*bL+AH1_(0.25)*dL+AH1_(0.25)*fL+AH1_(0.25)*hL-eL; + nz=ASatH1(abs(nz)*APrxMedRcpH1(AMax3H1(AMax3H1(bL,dL,eL),fL,hL)-AMin3H1(AMin3H1(bL,dL,eL),fL,hL))); + nz=AH1_(-0.5)*nz+AH1_(1.0); + // Min and max of ring. + AH1 mn4R=min(AMin3H1(bR,dR,fR),hR); + AH1 mn4G=min(AMin3H1(bG,dG,fG),hG); + AH1 mn4B=min(AMin3H1(bB,dB,fB),hB); + AH1 mx4R=max(AMax3H1(bR,dR,fR),hR); + AH1 mx4G=max(AMax3H1(bG,dG,fG),hG); + AH1 mx4B=max(AMax3H1(bB,dB,fB),hB); + // Immediate constants for peak range. + AH2 peakC=AH2(1.0,-1.0*4.0); + // Limiters, these need to be high precision RCPs. + AH1 hitMinR=mn4R*ARcpH1(AH1_(4.0)*mx4R); + AH1 hitMinG=mn4G*ARcpH1(AH1_(4.0)*mx4G); + AH1 hitMinB=mn4B*ARcpH1(AH1_(4.0)*mx4B); + AH1 hitMaxR=(peakC.x-mx4R)*ARcpH1(AH1_(4.0)*mn4R+peakC.y); + AH1 hitMaxG=(peakC.x-mx4G)*ARcpH1(AH1_(4.0)*mn4G+peakC.y); + AH1 hitMaxB=(peakC.x-mx4B)*ARcpH1(AH1_(4.0)*mn4B+peakC.y); + AH1 lobeR=max(-hitMinR,hitMaxR); + AH1 lobeG=max(-hitMinG,hitMaxG); + AH1 lobeB=max(-hitMinB,hitMaxB); + AH1 lobe=max(AH1_(-FSR_RCAS_LIMIT),min(AMax3H1(lobeR,lobeG,lobeB),AH1_(0.0)))*AH2_AU1(con.y).x; + // Apply noise removal. + #ifdef FSR_RCAS_DENOISE + lobe*=nz; + #endif + // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. + AH1 rcpL=APrxMedRcpH1(AH1_(4.0)*lobe+AH1_(1.0)); + pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; + pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; + pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// PACKED 16-BIT VERSION +//============================================================================================================================== +#if defined(A_GPU)&&defined(A_HALF)&&defined(FSR_RCAS_HX2) + // Input callback prototypes that need to be implemented by the calling shader + AH4 FsrRcasLoadHx2(ASW2 p); + void FsrRcasInputHx2(inout AH2 r,inout AH2 g,inout AH2 b); +//------------------------------------------------------------------------------------------------------------------------------ + // Can be used to convert from packed Structures of Arrays to Arrays of Structures for store. + void FsrRcasDepackHx2(out AH4 pix0,out AH4 pix1,AH2 pixR,AH2 pixG,AH2 pixB){ + #ifdef A_HLSL + // Invoke a slower path for DX only, since it won't allow uninitialized values. + pix0.a=pix1.a=0.0; + #endif + pix0.rgb=AH3(pixR.x,pixG.x,pixB.x); + pix1.rgb=AH3(pixR.y,pixG.y,pixB.y);} +//------------------------------------------------------------------------------------------------------------------------------ + void FsrRcasHx2( + // Output values are for 2 8x8 tiles in a 16x8 region. + // pix<R,G,B>.x = left 8x8 tile + // pix<R,G,B>.y = right 8x8 tile + // This enables later processing to easily be packed as well. + out AH2 pixR, + out AH2 pixG, + out AH2 pixB, + #ifdef FSR_RCAS_PASSTHROUGH_ALPHA + out AH2 pixA, + #endif + AU2 ip, // Integer pixel position in output. + AU4 con){ // Constant generated by RcasSetup(). + // No scaling algorithm uses minimal 3x3 pixel neighborhood. + ASW2 sp0=ASW2(ip); + AH3 b0=FsrRcasLoadHx2(sp0+ASW2( 0,-1)).rgb; + AH3 d0=FsrRcasLoadHx2(sp0+ASW2(-1, 0)).rgb; + #ifdef FSR_RCAS_PASSTHROUGH_ALPHA + AH4 ee0=FsrRcasLoadHx2(sp0); + AH3 e0=ee0.rgb;pixA.r=ee0.a; + #else + AH3 e0=FsrRcasLoadHx2(sp0).rgb; + #endif + AH3 f0=FsrRcasLoadHx2(sp0+ASW2( 1, 0)).rgb; + AH3 h0=FsrRcasLoadHx2(sp0+ASW2( 0, 1)).rgb; + ASW2 sp1=sp0+ASW2(8,0); + AH3 b1=FsrRcasLoadHx2(sp1+ASW2( 0,-1)).rgb; + AH3 d1=FsrRcasLoadHx2(sp1+ASW2(-1, 0)).rgb; + #ifdef FSR_RCAS_PASSTHROUGH_ALPHA + AH4 ee1=FsrRcasLoadHx2(sp1); + AH3 e1=ee1.rgb;pixA.g=ee1.a; + #else + AH3 e1=FsrRcasLoadHx2(sp1).rgb; + #endif + AH3 f1=FsrRcasLoadHx2(sp1+ASW2( 1, 0)).rgb; + AH3 h1=FsrRcasLoadHx2(sp1+ASW2( 0, 1)).rgb; + // Arrays of Structures to Structures of Arrays conversion. + AH2 bR=AH2(b0.r,b1.r); + AH2 bG=AH2(b0.g,b1.g); + AH2 bB=AH2(b0.b,b1.b); + AH2 dR=AH2(d0.r,d1.r); + AH2 dG=AH2(d0.g,d1.g); + AH2 dB=AH2(d0.b,d1.b); + AH2 eR=AH2(e0.r,e1.r); + AH2 eG=AH2(e0.g,e1.g); + AH2 eB=AH2(e0.b,e1.b); + AH2 fR=AH2(f0.r,f1.r); + AH2 fG=AH2(f0.g,f1.g); + AH2 fB=AH2(f0.b,f1.b); + AH2 hR=AH2(h0.r,h1.r); + AH2 hG=AH2(h0.g,h1.g); + AH2 hB=AH2(h0.b,h1.b); + // Run optional input transform. + FsrRcasInputHx2(bR,bG,bB); + FsrRcasInputHx2(dR,dG,dB); + FsrRcasInputHx2(eR,eG,eB); + FsrRcasInputHx2(fR,fG,fB); + FsrRcasInputHx2(hR,hG,hB); + // Luma times 2. + AH2 bL=bB*AH2_(0.5)+(bR*AH2_(0.5)+bG); + AH2 dL=dB*AH2_(0.5)+(dR*AH2_(0.5)+dG); + AH2 eL=eB*AH2_(0.5)+(eR*AH2_(0.5)+eG); + AH2 fL=fB*AH2_(0.5)+(fR*AH2_(0.5)+fG); + AH2 hL=hB*AH2_(0.5)+(hR*AH2_(0.5)+hG); + // Noise detection. + AH2 nz=AH2_(0.25)*bL+AH2_(0.25)*dL+AH2_(0.25)*fL+AH2_(0.25)*hL-eL; + nz=ASatH2(abs(nz)*APrxMedRcpH2(AMax3H2(AMax3H2(bL,dL,eL),fL,hL)-AMin3H2(AMin3H2(bL,dL,eL),fL,hL))); + nz=AH2_(-0.5)*nz+AH2_(1.0); + // Min and max of ring. + AH2 mn4R=min(AMin3H2(bR,dR,fR),hR); + AH2 mn4G=min(AMin3H2(bG,dG,fG),hG); + AH2 mn4B=min(AMin3H2(bB,dB,fB),hB); + AH2 mx4R=max(AMax3H2(bR,dR,fR),hR); + AH2 mx4G=max(AMax3H2(bG,dG,fG),hG); + AH2 mx4B=max(AMax3H2(bB,dB,fB),hB); + // Immediate constants for peak range. + AH2 peakC=AH2(1.0,-1.0*4.0); + // Limiters, these need to be high precision RCPs. + AH2 hitMinR=mn4R*ARcpH2(AH2_(4.0)*mx4R); + AH2 hitMinG=mn4G*ARcpH2(AH2_(4.0)*mx4G); + AH2 hitMinB=mn4B*ARcpH2(AH2_(4.0)*mx4B); + AH2 hitMaxR=(peakC.x-mx4R)*ARcpH2(AH2_(4.0)*mn4R+peakC.y); + AH2 hitMaxG=(peakC.x-mx4G)*ARcpH2(AH2_(4.0)*mn4G+peakC.y); + AH2 hitMaxB=(peakC.x-mx4B)*ARcpH2(AH2_(4.0)*mn4B+peakC.y); + AH2 lobeR=max(-hitMinR,hitMaxR); + AH2 lobeG=max(-hitMinG,hitMaxG); + AH2 lobeB=max(-hitMinB,hitMaxB); + AH2 lobe=max(AH2_(-FSR_RCAS_LIMIT),min(AMax3H2(lobeR,lobeG,lobeB),AH2_(0.0)))*AH2_(AH2_AU1(con.y).x); + // Apply noise removal. + #ifdef FSR_RCAS_DENOISE + lobe*=nz; + #endif + // Resolve, which needs the medium precision rcp approximation to avoid visible tonality changes. + AH2 rcpL=APrxMedRcpH2(AH2_(4.0)*lobe+AH2_(1.0)); + pixR=(lobe*bR+lobe*dR+lobe*hR+lobe*fR+eR)*rcpL; + pixG=(lobe*bG+lobe*dG+lobe*hG+lobe*fG+eG)*rcpL; + pixB=(lobe*bB+lobe*dB+lobe*hB+lobe*fB+eB)*rcpL;} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// FSR - [LFGA] LINEAR FILM GRAIN APPLICATOR +// +//------------------------------------------------------------------------------------------------------------------------------ +// Adding output-resolution film grain after scaling is a good way to mask both rendering and scaling artifacts. +// Suggest using tiled blue noise as film grain input, with peak noise frequency set for a specific look and feel. +// The 'Lfga*()' functions provide a convenient way to introduce grain. +// These functions limit grain based on distance to signal limits. +// This is done so that the grain is temporally energy preserving, and thus won't modify image tonality. +// Grain application should be done in a linear colorspace. +// The grain should be temporally changing, but have a temporal sum per pixel that adds to zero (non-biased). +//------------------------------------------------------------------------------------------------------------------------------ +// Usage, +// FsrLfga*( +// color, // In/out linear colorspace color {0 to 1} ranged. +// grain, // Per pixel grain texture value {-0.5 to 0.5} ranged, input is 3-channel to support colored grain. +// amount); // Amount of grain (0 to 1} ranged. +//------------------------------------------------------------------------------------------------------------------------------ +// Example if grain texture is monochrome: 'FsrLfgaF(color,AF3_(grain),amount)' +//============================================================================================================================== +#if defined(A_GPU) + // Maximum grain is the minimum distance to the signal limit. + void FsrLfgaF(inout AF3 c,AF3 t,AF1 a){c+=(t*AF3_(a))*min(AF3_(1.0)-c,c);} +#endif +//============================================================================================================================== +#if defined(A_GPU)&&defined(A_HALF) + // Half precision version (slower). + void FsrLfgaH(inout AH3 c,AH3 t,AH1 a){c+=(t*AH3_(a))*min(AH3_(1.0)-c,c);} +//------------------------------------------------------------------------------------------------------------------------------ + // Packed half precision version (faster). + void FsrLfgaHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 tR,AH2 tG,AH2 tB,AH1 a){ + cR+=(tR*AH2_(a))*min(AH2_(1.0)-cR,cR);cG+=(tG*AH2_(a))*min(AH2_(1.0)-cG,cG);cB+=(tB*AH2_(a))*min(AH2_(1.0)-cB,cB);} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// FSR - [SRTM] SIMPLE REVERSIBLE TONE-MAPPER +// +//------------------------------------------------------------------------------------------------------------------------------ +// This provides a way to take linear HDR color {0 to FP16_MAX} and convert it into a temporary {0 to 1} ranged post-tonemapped linear. +// The tonemapper preserves RGB ratio, which helps maintain HDR color bleed during filtering. +//------------------------------------------------------------------------------------------------------------------------------ +// Reversible tonemapper usage, +// FsrSrtm*(color); // {0 to FP16_MAX} converted to {0 to 1}. +// FsrSrtmInv*(color); // {0 to 1} converted into {0 to 32768, output peak safe for FP16}. +//============================================================================================================================== +#if defined(A_GPU) + void FsrSrtmF(inout AF3 c){c*=AF3_(ARcpF1(AMax3F1(c.r,c.g,c.b)+AF1_(1.0)));} + // The extra max solves the c=1.0 case (which is a /0). + void FsrSrtmInvF(inout AF3 c){c*=AF3_(ARcpF1(max(AF1_(1.0/32768.0),AF1_(1.0)-AMax3F1(c.r,c.g,c.b))));} +#endif +//============================================================================================================================== +#if defined(A_GPU)&&defined(A_HALF) + void FsrSrtmH(inout AH3 c){c*=AH3_(ARcpH1(AMax3H1(c.r,c.g,c.b)+AH1_(1.0)));} + void FsrSrtmInvH(inout AH3 c){c*=AH3_(ARcpH1(max(AH1_(1.0/32768.0),AH1_(1.0)-AMax3H1(c.r,c.g,c.b))));} +//------------------------------------------------------------------------------------------------------------------------------ + void FsrSrtmHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){ + AH2 rcp=ARcpH2(AMax3H2(cR,cG,cB)+AH2_(1.0));cR*=rcp;cG*=rcp;cB*=rcp;} + void FsrSrtmInvHx2(inout AH2 cR,inout AH2 cG,inout AH2 cB){ + AH2 rcp=ARcpH2(max(AH2_(1.0/32768.0),AH2_(1.0)-AMax3H2(cR,cG,cB)));cR*=rcp;cG*=rcp;cB*=rcp;} +#endif +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +//_____________________________________________________________/\_______________________________________________________________ +//============================================================================================================================== +// +// FSR - [TEPD] TEMPORAL ENERGY PRESERVING DITHER +// +//------------------------------------------------------------------------------------------------------------------------------ +// Temporally energy preserving dithered {0 to 1} linear to gamma 2.0 conversion. +// Gamma 2.0 is used so that the conversion back to linear is just to square the color. +// The conversion comes in 8-bit and 10-bit modes, designed for output to 8-bit UNORM or 10:10:10:2 respectively. +// Given good non-biased temporal blue noise as dither input, +// the output dither will temporally conserve energy. +// This is done by choosing the linear nearest step point instead of perceptual nearest. +// See code below for details. +//------------------------------------------------------------------------------------------------------------------------------ +// DX SPEC RULES FOR FLOAT->UNORM 8-BIT CONVERSION +// =============================================== +// - Output is 'uint(floor(saturate(n)*255.0+0.5))'. +// - Thus rounding is to nearest. +// - NaN gets converted to zero. +// - INF is clamped to {0.0 to 1.0}. +//============================================================================================================================== +#if defined(A_GPU) + // Hand tuned integer position to dither value, with more values than simple checkerboard. + // Only 32-bit has enough precision for this compddation. + // Output is {0 to <1}. + AF1 FsrTepdDitF(AU2 p,AU1 f){ + AF1 x=AF1_(p.x+f); + AF1 y=AF1_(p.y); + // The 1.61803 golden ratio. + AF1 a=AF1_((1.0+sqrt(5.0))/2.0); + // Number designed to provide a good visual pattern. + AF1 b=AF1_(1.0/3.69); + x=x*a+(y*b); + return AFractF1(x);} +//------------------------------------------------------------------------------------------------------------------------------ + // This version is 8-bit gamma 2.0. + // The 'c' input is {0 to 1}. + // Output is {0 to 1} ready for image store. + void FsrTepdC8F(inout AF3 c,AF1 dit){ + AF3 n=sqrt(c); + n=floor(n*AF3_(255.0))*AF3_(1.0/255.0); + AF3 a=n*n; + AF3 b=n+AF3_(1.0/255.0);b=b*b; + // Ratio of 'a' to 'b' required to produce 'c'. + // APrxLoRcpF1() won't work here (at least for very high dynamic ranges). + // APrxMedRcpF1() is an IADD,FMA,MUL. + AF3 r=(c-b)*APrxMedRcpF3(a-b); + // Use the ratio as a cutoff to choose 'a' or 'b'. + // AGtZeroF1() is a MUL. + c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/255.0));} +//------------------------------------------------------------------------------------------------------------------------------ + // This version is 10-bit gamma 2.0. + // The 'c' input is {0 to 1}. + // Output is {0 to 1} ready for image store. + void FsrTepdC10F(inout AF3 c,AF1 dit){ + AF3 n=sqrt(c); + n=floor(n*AF3_(1023.0))*AF3_(1.0/1023.0); + AF3 a=n*n; + AF3 b=n+AF3_(1.0/1023.0);b=b*b; + AF3 r=(c-b)*APrxMedRcpF3(a-b); + c=ASatF3(n+AGtZeroF3(AF3_(dit)-r)*AF3_(1.0/1023.0));} +#endif +//============================================================================================================================== +#if defined(A_GPU)&&defined(A_HALF) + AH1 FsrTepdDitH(AU2 p,AU1 f){ + AF1 x=AF1_(p.x+f); + AF1 y=AF1_(p.y); + AF1 a=AF1_((1.0+sqrt(5.0))/2.0); + AF1 b=AF1_(1.0/3.69); + x=x*a+(y*b); + return AH1(AFractF1(x));} +//------------------------------------------------------------------------------------------------------------------------------ + void FsrTepdC8H(inout AH3 c,AH1 dit){ + AH3 n=sqrt(c); + n=floor(n*AH3_(255.0))*AH3_(1.0/255.0); + AH3 a=n*n; + AH3 b=n+AH3_(1.0/255.0);b=b*b; + AH3 r=(c-b)*APrxMedRcpH3(a-b); + c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/255.0));} +//------------------------------------------------------------------------------------------------------------------------------ + void FsrTepdC10H(inout AH3 c,AH1 dit){ + AH3 n=sqrt(c); + n=floor(n*AH3_(1023.0))*AH3_(1.0/1023.0); + AH3 a=n*n; + AH3 b=n+AH3_(1.0/1023.0);b=b*b; + AH3 r=(c-b)*APrxMedRcpH3(a-b); + c=ASatH3(n+AGtZeroH3(AH3_(dit)-r)*AH3_(1.0/1023.0));} +//============================================================================================================================== + // This computes dither for positions 'p' and 'p+{8,0}'. + AH2 FsrTepdDitHx2(AU2 p,AU1 f){ + AF2 x; + x.x=AF1_(p.x+f); + x.y=x.x+AF1_(8.0); + AF1 y=AF1_(p.y); + AF1 a=AF1_((1.0+sqrt(5.0))/2.0); + AF1 b=AF1_(1.0/3.69); + x=x*AF2_(a)+AF2_(y*b); + return AH2(AFractF2(x));} +//------------------------------------------------------------------------------------------------------------------------------ + void FsrTepdC8Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){ + AH2 nR=sqrt(cR); + AH2 nG=sqrt(cG); + AH2 nB=sqrt(cB); + nR=floor(nR*AH2_(255.0))*AH2_(1.0/255.0); + nG=floor(nG*AH2_(255.0))*AH2_(1.0/255.0); + nB=floor(nB*AH2_(255.0))*AH2_(1.0/255.0); + AH2 aR=nR*nR; + AH2 aG=nG*nG; + AH2 aB=nB*nB; + AH2 bR=nR+AH2_(1.0/255.0);bR=bR*bR; + AH2 bG=nG+AH2_(1.0/255.0);bG=bG*bG; + AH2 bB=nB+AH2_(1.0/255.0);bB=bB*bB; + AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR); + AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG); + AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB); + cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/255.0)); + cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/255.0)); + cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/255.0));} +//------------------------------------------------------------------------------------------------------------------------------ + void FsrTepdC10Hx2(inout AH2 cR,inout AH2 cG,inout AH2 cB,AH2 dit){ + AH2 nR=sqrt(cR); + AH2 nG=sqrt(cG); + AH2 nB=sqrt(cB); + nR=floor(nR*AH2_(1023.0))*AH2_(1.0/1023.0); + nG=floor(nG*AH2_(1023.0))*AH2_(1.0/1023.0); + nB=floor(nB*AH2_(1023.0))*AH2_(1.0/1023.0); + AH2 aR=nR*nR; + AH2 aG=nG*nG; + AH2 aB=nB*nB; + AH2 bR=nR+AH2_(1.0/1023.0);bR=bR*bR; + AH2 bG=nG+AH2_(1.0/1023.0);bG=bG*bG; + AH2 bB=nB+AH2_(1.0/1023.0);bB=bB*bB; + AH2 rR=(cR-bR)*APrxMedRcpH2(aR-bR); + AH2 rG=(cG-bG)*APrxMedRcpH2(aG-bG); + AH2 rB=(cB-bB)*APrxMedRcpH2(aB-bB); + cR=ASatH2(nR+AGtZeroH2(dit-rR)*AH2_(1.0/1023.0)); + cG=ASatH2(nG+AGtZeroH2(dit-rG)*AH2_(1.0/1023.0)); + cB=ASatH2(nB+AGtZeroH2(dit-rB)*AH2_(1.0/1023.0));} +#endif |