WIDEVINE

WV Modular DRM Security Integration
Guide for Common Encryption (CENC)

Version 9

© 2013 Google, Inc. All Rights Reserved. No express or implied warranties are provided for herein. All specifications are subject
to change and any expected future products, features or functionality will be provided on an if and when available basis. Note
that the descriptions of Google’s patents and other intellectual property herein are intended to provide illustrative,
non-exhaustive examples of some of the areas to which the patents and applications are currently believed to pertain, and is not
intended for use in a legal proceeding to interpret or limit the scope or meaning of the patents or their claims, or indicate that a
Google patent claim(s) is materially required to perform or implement any of the listed items.

www.widevine.com Confidential

Page 1 of 76

http://www.widevine.com/

Revision History

Version| Date |Description Author
1 4/5/2013 Initial revision Jeff Tinker, Fred
Gylys-Colwell, Edwin
Refactored from Widevine Security Integration Guide for ~ |Wong, Rahul Frias,
DASH on Android Devices John Bruce
2 4/9/2013 Update to reflect License Protocol V2.1 Jeff Tinker, Fred
Gylys-Colwell
3 4/25/2013 |Clarified refresh key parameters Jeff Tinker, Fred
Gylys-Colwell
4 5/9/2013 Clarify signature length in GenerateRSASignature Fred Gylys-Colwell
5 8/6/2013 Add Out-Of-Resource and Key Expired error codes Fred Gylys-Colwell
9 2/25/2013 |Add Version 9 updates Fred Gylys-Colwell

www.widevine.com

Confidential

Page 2 of 76

http://www.widevine.com/

Table of Contents

Revision History

Table of Contents

Terms and Definitions

References
Audience
Purpose
Overview

Security Levels

OEMCrypto APIs for Common Encryption

Session Context

License Signing and Verification

Key Derivation: enc key + mac keys

Key Control Block

Control Bits definition: 32 bits

Key Control Block Algorithm

Nonce Algorithm

Replay Control and Nonce Requirements

Content Decryption

RSA Certificate Provisioning and License Requests

Changes to Session

www.widevine.com Confidential Page 3 of 76

http://www.widevine.com/

RSA Certificate Provisioning

License Request Signed by RSA Certificate

Session Usage Table and Reporting

OEMCrypto API for CENC

Crypto Device Control API

OEMCrypto_Initialize

OEMCrypto Terminate

Crypto Key Ladder API

OEMCrypto

OpenSession

OEMCrypto

CloseSession

OEMCrypto

GenerateDerivedKeys

OEMCrypto

GenerateNonce

OEMCrypto

GenerateSignature

OEMCrypto

LoadKeys

OEMCrypto

RefreshKeys

Decryption API

OEMCrypto

SelectKey

OEMCrypto

DecryptCTR

OEMCrypto

Generic Encrypt

OEMCrypto

Generic Decrypt

OEMCrypto

Generic_Sign

OEMCrypto

Generic Verify

www.widevine.com

Confidential

Page 4 of 76

http://www.widevine.com/

Provisioning API

OEMCrypto

WrapKeybox

OEMCrypto

InstallKeybox

Keybox Access and Validation API

OEMCrypto

IsKeyboxValid

OEMCrypto

GetDevicelD

OEMCrypto

GetKeyData

OEMCrypto

GetRandom

OEMCrypto

APIVersion

OEMCrypto

SecurityLevel

OEMCrypto

GetHDCPCapability

OEMCrypto

SupportsUsageTable

RSA Certificate Provisioning API

OEMCrypto

RewrapDeviceRSAKey

OEMCrypto

LoadDeviceRSAKey

OEMCrypto

GenerateRSASignature

OEMCrypto

DeriveKeysFromSessionKey

Usage Table API

OEMCrypto

UpdateUsageTable

OEMCrypto

DeactivateUsageEntry

OEMCrypto

ReportUsage

OEMCrypto

DeleteUsageEntry

www.widevine.com

Confidential

Page 5 of 76

http://www.widevine.com/

OEMCrypto DeleteUsageTable

Error Codes

RSA Algorithm Details

RSASSA-PSS Details

RSA-OAEP

www.widevine.com Confidential Page 6 of 76

http://www.widevine.com/

Terms and Definitions

Device Id — A null-terminated C-string uniquely identifying the device. 32 character
maximum, including NULL termination.

Device Key — 128-bit AES key assigned by Widevine and used to secure entitlements.

Keybox — Widevine structure containing keys and other information used to establish a root
of trust on a device. The keybox is either installed during manufacture or in the field. Factory
provisioned devices have a higher level of security and may be approved for access to higher
quality content.

Provision — Install a Keybox that has been uniquely constructed for a specific device.

Trusted Execution Environment (TEE) — The portion of the device that contains security
hardware and prevents access by non secure system resources.

References

DASH - 23001-7 ISO BMFF Common Encryption

DASH - 14496-12 ISO BMFF Amendment

W3C Encrypted Media Extensions (EME)

WV Modular DRM Security Integration Guide for Common Encryption (CENC) : Android

Supplement

Audience

This document is intended for SOC and OEM device manufacturers to integrate with
Widevine content protection using Common Encryption (CENC) on consumer devices.

Purpose

This document describes the security APls used in Widevine content protection for playing
content compatible with the Dynamic Adaptive Streaming over HTTP specification, ISO/IEC
23009-1 (MPEG DASH) using the DRM methods specified in ISO/IEC 23001-7: Common

www.widevine.com Confidential Page 7 of 76

http://www.widevine.com/

Encryption, on devices capable of playing premium video content.

This document defines the Widevine Modular DRM functionality common across device
integrations that use the OEMCrypto integration API. There are supplementary documents
describing the integration details for each supported platform, as listed in the References

section.

Overview

Encrypted content is prepared using an encryption server and stored in a content library. The
content is encrypted using a unified standard to produce one set of files that play on all
compatible devices. The encrypted streaming content is delivered from the content library to
the client devices via standard HTTP web servers.

Clear
Content

content

provisicning request

provisioning

Provisioning
Server

response

license request

I Content
Servers

Encrypted
Contant

gl

License
Server

- Client
Devices

“license response

Widevine
License
Server
SDK

Licenses to view the content are obtained from a License Server. The security (signing and
encryption) of the licenses is implemented by the License Server SDK, which is a library that
is linked with the service provider’s license server. A license is requested from the server
using a license request (a.k.a challenge). The license response is delivered to the client.

A provisioning server may be required to distribute device-unique credentials to the devices.
This process extends the chain of trust established during factory or field provisioning of the
devices using the Widevine keybox by securely delivering an asymmetric device private key

to the device over a secure channel.

www.widevine.com

Confidential

Page 8 of 76

http://www.widevine.com/

Security Levels

Content protection is dependent upon the security capabilities of the device platform. Ideally,
security is provided by a combination of hardware security functions and a
hardware-protected video path; however, some devices lack the infrastructure to support this
security.

Widevine security levels are based on the hardware capabilities of the device and embedded
platform integration.

Widevine Security Hardware or
Security|Secure Boot |Key Trusted Execution Widevine Keybox and
Level [Loader Provisioning |[Environment Video Key Processing [Hardware Video Path
Level 1 Yes Factory Yes Keys never exposed in |Hardware Protected Video
clear to host CPU Path
Level 2 Yes Factory Yes Keys never exposed in [Clear video streams
clear to host CPU delivered to renderer
Level 3 Yes Field No Clear keys exposed to |Clear video streams
host CPU delivered to decoder

An OEM-provided OEMCrypto library is required for implementation of Widevine security
Level 1 or 2.

OEMCrypto APIs for Common Encryption

OEMCrypto is an interface to the trusted environment that implements the functions needed
to protect and manage keys for the Widevine content protection system. The interface
provides: (1) a means to establish a signing key that can be used to verify the authenticity of
messages to and from a license server (2) a means to establish a key encryption key that can
be used to decrypt the key material contained in the messages (3) a means to load encrypted
content keys into the trusted environment and decrypt them, and (4) a means to use the
content keys to produce a decrypted stream for decoding and rendering.

In this system the OEMCrypto implementation is responsible for ensuring that session keys,
the decrypted content keys, and the decrypted content stream are never accessible to any
user code running on the device. This is typically accomplished through a secondary
processor that has its own dedicated memory and runs the crypto algorithms that require
access to the protected key material. In such a system, key material, or any bytes that have
been decrypted with the device’s root keys, are never returned back to the primary processor.
The OEMCrypto implementation is also responsible for completely erasing all session-level
state, including content keys and derived keys, when the session is terminated.

www.widevine.com Confidential Page 9 of 76

http://www.widevine.com/

Session Context

One or more crypto sessions will be created to support A/V playback. Each session has
context, or state, that must be maintained in secure memory. The required session state is
summarized in the diagram below.

Most of the OEMCrypto calls require information to be retained in the session context. There
may be several sessions, and each session has its own collection of keys. Each session has
its own current content key and its own pair of message signing keys (mac_keys). Typically,
a session has a video key and an audio key, but there may be more than two keys. There
may be several sessions active at any moment. When an application wishes to switch from
one resolution to another, it may create a new session with a different set of keys.

The functions in the Crypto Key Ladder API section are used by the application to generate a
license request, and are used to install and update keys for a given session. The functions in
the Decryption API and the Generalized Modular DRM sections are used to select a current
key for the session and to decrypt or encrypt data with the current key. Because different
applications may use different RSA certificates, the functions in RSA Certificate Provisioning
API are also session specific. Each session may have a different RSA key installed.

The functions in the Crypto Device Control API, Provisioning API, and Keybox Access and
Validation API sections are not associated with any one session. There is only one widevine
keybox on the device. These functions handle initialization of the device itself.

The figure below shows data that should be stored in the trusted environment. The widevine
keybox is shared for all sessions. All of the other data in the figure is specific to a session.

When the session is closed via OEMCrypto_CloseSession(), all of the Session Context
resources must be explicitly cleared and then released.

License Signing and Verification

All license messages are signed to ensure that the license request and response can not be
modified. The OEMCrypto implementation performs the signature generation and verification
to prevent tampering with the license messages.

The sequence diagram below illustrates the interactions between the DrmEngine, the

OEMCrypto Trusted Execution Environment (TEE) and the app, related to license signing and
verification.

www.widevine.com Confidential Page 10 of 76

http://www.widevine.com/

OEMCrypto TEE App =<-> License Server

—— —

getLicenseRequest()

OpenSession()

GenerateMonce()

nanca

GenerateDerivedKeys(}

-

Immpu?e mac_key{chient], maks keyfserver], enc key
GenerateSignature{rag)

il

5.'_-q| =HMAC-SHA256(mac_kaylciient], req)

L J

Initial license request(req Il sig,)

pravidel icenseResponse(rasp ! 5]

LoadKeys{rasp, s.igE, enc_mag Reys, key objsch

:l validate key ochjsct, verify sig, with mac_key[sarvear]

save canfent keys, updale mac keys
periodict) B el B B
renewal getLicenseRequest() :

GenerateMonce()

¥

GenerateSignature{rag)

&

5.'_qu =HMAC-SHA256{mac_kaylciient], req)

Renewal license request(req i! 5ig,]

pravidelicenseResponse(resp Il sig,)

RefreshKeys{resp, sn‘gz. key_refresh_object) o

validate ksy refresh_ohject,
verify 5.‘,';|2 with mac_keyserver], refrash keys

CloseSession()

. . -
i i i

The app calls getLicenseRequest() to obtain an opaque license request message to send to
the license server. The OEMCrypto calls OpenSession, GenerateDerivedKeys,
GenerateNonce and GenerateSignature are used in the construction and signing of the
request message. Once a license server response has been received, the app calls
provideLicenseResponse() to initiate signature verification, input validation and key loading.

After the initial license has been processed, there is a periodic renewal request/response
sequence that occurs during continued playback of the content. The OEMCrypto API calling
sequence for renewal is similar to the sequence for the original license message, except that
RefreshKeys is called instead of LoadKeys.

For the license initial and renewal requests, the OEMCrypto implementation is required to

generate a nonce and a signature that will be appended to the request. The nonce is used to
prevent replay attacks. A nonce-cache is used to enforce one-time-use of each nonce. A

www.widevine.com Confidential Page 11 of 76

http://www.widevine.com/

nonce is added to the cache when created, and removed from the cache when used.

Trusted Environment
to license servar

ﬁ nonce_cache : 32b x 4
license_reques
crypto
RMNG

OEMCrypto_GenerateNonce()

nonce

A

signature

For the license initial and renewal responses, the OEMCrypto implementation must verify that
the license response and its signature match.

signature == HMAC-SHA256(mac_key[server], msg)

where mac_key[server] is defined in the Key Derivation section, and msg is a byte array
provided to the OEMCrypto API function for computation of the signature.

Note: When verifying the signature, the string comparison between the input signature and
the recomputed signature should be a constant-time operation, to avoid leaking timing info.

The signatures for license initial and renewal requests are generated through the API call
OEMCrypto_GenerateSignature().

Trusted Environment

to license servar -
mac_key[client] : 256

license_raquest - %

signature
—

A

OEMCrypto_GenerateSignature()

www.widevine.com Confidential Page 12 of 76

http://www.widevine.com/

The signature on the initial and renewal license response responses are verified within the
OEMCrypto_Loadkeys() and OEMCrypto_RefreshKeys(), respectively. The signing algorithm
is HMAC-SHA256.

Trusted Environment

from license server
mac_keys are
- updated with the
@ | enc_key:128 | decrypted
| K enc_mac_keys
license_response keyi r,.r for next use
anc_mas_keys ~ 2 p(Meel)| updated mac yeys
enc_mac_keys_iv — L
p key only first 128 bi
ey_array[n] “_._._\ of key are used content_key_table[n]
key_data, key_size data GI:(E?EB - ‘ »| clear key_data, key_size use before
. i) ke
key_data_iv Iy y clear key_control r," update
kay control data AES- -
y- . v e CBC-128 S
key_control_iv mac_key[server] : 256
] key_contral k
"an_mha . EEb : 4 _.. l E!r

license response o %

signature -
T —

OEMCrypto_LoadKeys()

www.widevine.com Confidential Page 13 of 76

http://www.widevine.com/

from license server

{L Trusted Environment
license_response
content_key_table[n] mac_key[server] : 256
key_contral]l - key_control
L]
) | key_control
nonce_cache :32bx 4 [—» varification key
license_responsa -
signature
e —

OEMCrypto_RefreshKeys()

In addition to verifying the signature on the response messages, the implementations of
OEMCrypto_LoadKeys() and OEMCrypto_RefreshKeys() must verify that the key_array
entries are contained in the memory address range of the license response.

Key Derivation: enc_key + mac_keys

License signing and key encryption both depend on the device_key from the keybox. In order
to avoid reusing the device_key for multiple purposes, separate keys are derived from the
device_key, and the device_key is not used directly for any other purpose. Like the device
key, these keys are never revealed in clear form.

Key derivation is based on_NIST 800-108. Specifically NIST 800-108 key derivation using
128-bit AES-128-CMAC as the pseudorandom function in counter mode.

These keys are:
1. encrypt_key: used to encrypt the content key:

encrypt_key := AES-128-CMAC(device _key, 0x01 || context_enc)
2. mac_keys: used as the hash key for the HMAC to sign and verify license messages:

mac_key[server] || mac_key[client]

;= AES-128-CMAC(device_key, 0x01 || context_mac) ||
AES-128-CMAC(device_key, 0x02 || context_mac) ||
AES-128-CMAC(device_key, 0x03 || context_mac) ||
AES-128-CMAC(device_key, 0x04 || context_mac)

www.widevine.com Confidential Page 14 of 76

http://www.google.com/url?q=http%3A%2F%2Fcsrc.nist.gov%2Fpublications%2Fnistpubs%2F800-108%2Fsp800-108.pdf&sa=D&sntz=1&usg=AFQjCNFyZ601I1lYf0Wgaf6EJGb8aMk-bQ
http://www.google.com/url?q=http%3A%2F%2Fcsrc.nist.gov%2Fpublications%2Fnistpubs%2F800-108%2Fsp800-108.pdf&sa=D&sntz=1&usg=AFQjCNFyZ601I1lYf0Wgaf6EJGb8aMk-bQ
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4493&sa=D&sntz=1&usg=AFQjCNG8Jzvw-Of1v-inpFlvctptth6ECg
http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc4493&sa=D&sntz=1&usg=AFQjCNG8Jzvw-Of1v-inpFlvctptth6ECg
http://www.widevine.com/

For the case of license renewal, the mac_keys are generated by the license server,

then encrypted and placed in a license response message.

is as follows:

mac_keys := AES-128-CBC-decrypt(encrypt_key, iv, encrypted_mac_key)

In this case the derivation

where context_enc and context_mac are provided as parameters to the OEMCrypto API
function generates these keys, and “||” represents the concatenation operation on message

bytes.

The API call for generating the derived keys is OEMCrypto_GenerateDerivedKeys().

Inputs:

Trusted Environment

device_ k-a:.r 1128

key* I ‘ key

context_mac

AES 128- AES 128-
#| 0x01 Il context_mac — CMAC CMAC
#= 0x02 || context_mac

mac_key[server] : 256

device_key : 128 |

key + o * key

——=| 003 Il context_mac A

| 0x04 Il context_mac

ES-128-
CMAC

Y

mac_key(client] : 256

= Ox01 |l context_enc

context_enc

device_key : 128
keyy

AES-128-
CMAC

enc_key : 128

OEMCrypto_GenerateDerivedKeys()

Note: the mac_keys computed by OEMCrypto_GenerateDerivedKeys() will be replaced when

www.widevine.com

Confidential

Page 15 of 76

http://www.widevine.com/

OEMCrypto_LoadKeys() is called, as it receives new server-generated and encrypted
mac_keys.

Key Control Block

There is a key control block associated with each content key. The key control block specifies
security constraints for the stream protected by each content key, which need to be enforced
by the trusted environment. These security constraints include the data path security
requirement, key validity lifetime and output controls.

On most Android devices, the video and audio paths have differing security requirements.
While the video path can be entirely protected by hardware, the audio path may not, due to
processing that is performed on the audio stream by the primary CPU after decryption. To
maintain security of the video stream, the audio and video streams are encrypted with
separate keys. The key control block provides a means to enforce data path security
requirements on each media stream.

The key control block is also used to securely limit the lifetime of keys, by associating a
timeout value with each content key. The timeout is enforced in the trusted environment.
Additionally, the key control block contains output control bits, enabling secure enforcement of
the output controls such as HDCP.

The key control block structure contains fields as defined below. The fields are defined to be
in big-endian byte order. The 128-bit key control block is AES-128-CBC encrypted with the

content key it is associated with, using a random IV.

Key Control Block: 128 bits

Field Description Bits

Verification Constant bytes ‘kctl’ or “kc09”. A device that supports version 9 of | 32
this API must support both verification strings.

Duration Maximum number of seconds during which the key can be used 32
after being set. Interpret 0 as unlimited.

Nonce Ensures that key control values can’t be replayed to the secure 32
environment. See “Nonce Algorithm”.

Control Bits Bit fields containing specific control bits, defined below 32

www.widevine.com Confidential Page 16 of 76

http://www.widevine.com/

Control Bits definition: 32 bits

bit 31 bit 30 bit 29 bits 28..15
Observe_DataPathType | Observe_ HDCP | Observe_ CGMS Reserved
O=Ignore O=Ignore O=Ignore setto 0
1=Observe 1=Observe 1=Observe

bit 14..13 bits 12..9

Replay_Control

0x0 - Session Usage table not required.

0x1 - Nonce required, create entry in Session Usage table.
0x2 - Require existing Session Usage table entry or Nonce.

HDCP_Version

0x0 - Any version

0x1 - HDCP version 1.0 required
0x2 - HDCP version 2.0 required
0x3 - HDCP version 2.1 required
0x4 - HDCP version 2.2 required

bit 8 bit 7 bit 6 bits 5
Allow_Encrypt Allow_Decrypt Allow_Sign Allow_Verify
0=Normal 0=Normal 0=Normal 0=Normal

1=May be used to

encrypt generic data.

1=May be used to

decrypt generic data.

generic data.

1=May be used to sign

1=May be used to verify
signature of generic data.

bit 4 bit 3 bit 2 bits 1..0

Data_Path_Type | Nonce Enable HDCP CGMS

0=Normal O=Ignore Nonce 0=HDCP not 0x00 - Copy freely - Unlimited
1=Secure only 1=Verify Nonce required copies may be made

1=HDCP required

0x02 - Copy Once - Only one copy
may be made

0x03 - Copy Never

www.widevine.com

Confidential

Page 17 of 76

http://www.widevine.com/

Key Control Block Algorithm

The key control block is a member of the OEMCrypto KeyObject data type, which is supplied
as the key_array parameters to LoadKeys(). The following steps shall be followed to decrypt,
verify, and apply the information in the key control block. Unless otherwise noted, these
steps should be performed during key control block verification in OEMCrypto_LoadKeys.

1.

2.

Verify that the key_control pointer is non-NULL. If not, return

OEMCrypto ERROR_CONTROL_INVALID.

AES-128-CBC-decrypt the content key {key data, key data_iv, key data_length} with
enc_key.

AES-128-CBC-decrypt the key control block {key_control, key_control_iv} using the
first 128 bits of the clear content key from step 2.

Verify that bytes 0..3 of the decrypted key control block contain the pattern ‘kctl’. If not,
return OEMCrypto ERROR_CONTROL_INVALID.

Apply the control fields:

a. Replay_Control and Nonce_Enable -- if required, verify the nonce. See the
next section (Nonce Algorithm) for details on verifying the nonce, and the
following section (Replay Control and Nonce Requirements) for details on when
to restrict replay. If the nonce verification fails, return
OEMCrypto ERROR_CONTROL_INVALID.

b. DataPathType -- If Observe DataPathType is 1 the DataPathType setting must
be enforced, otherwise the data path type must not be changed from its current
value. If DataPathType is 1, then the decrypted stream must not be generally
accessible. The system must provide a secure data path, aka “trusted video
path” (TVP), for the stream. If O there is no such constraint. If the setting is not
compatible with the security level of the stream, destroy the key and return
OEMCrypto ERROR_CONTENT_KEY_INVALID. Ifitis not be possible to
immediately detect a DataPathType and stream security level mismatch, the
failure may be reported and the key destroyed on next decrypt call, before
decryption.

HDCP -- If Observe_HDCP is 1, then apply the HDCP setting. Otherwise the HDCP
setting must not be changed from its current value. Should be done in
OEMCrypto_SelectKey.

CGMS -- If Observe_CGMS is 1, then apply the CGMS field if applicable on the
device. Otherwise the CGMS settings must not be changed from their current value.
Should be done in OEMCrypto_SelectKey.

Duration field -- on each DecryptCTR call for this session, compare elapsed time to
this value. If elapsed time exceeds this setting and the key has not been renewed,
return from the decrypt call with a return value of
OEMCrypto_ERROR_KEY_EXPIRED. The elapsed time clock starts counting at 0
when OEMCrypto_LoadKeys is called, and is reset to 0 when

www.widevine.com Confidential Page 18 of 76

http://www.widevine.com/

OEMCrypto_RefreshKeys is called. Duration is in seconds. Each session will have a
separate elapsed time clock.

9. Make the decrypted content key from step 2 available for decryption of the media
stream by DecryptCTR.

10. Return OEMCrypto_SUCCESS.

Nonce Algorithm

The nonce field of the Key Control Block is a 32 bit value that is generated in the trusted
environment. The OEMCrypto implementation is responsible for detecting whether it has ever
before received a message with the same nonce (a possible replay attack). The algorithm is
defined as follows:

1. Nonce generation: a new nonce is generated by the OEMCrypto implementation at
the request of the client, when OEMCrypto_GenerateNonce() is called. The nonce is
placed in the license request. The OEMCrypto implementation shall generate a 32-bit
cryptographically secure random number each time it is called by the client and
associate it with the session. If the generated value is already in the nonce cache,
generate a new nonce value.

2. Nonce monitoring: the OEMCrypto implementation is responsible for checking the
nonce in each call to OEMCrypto_LoadKeys() and OEMCrypto_RefreshKeys(), and
rejecting any keys whose nonce is not in the cache. If a nonce is in the cache, accept
the key and remove the nonce from the cache.

3. Nonce expiration: A session should maintain at least 4 of the most recently generated
nonces. Older nonce values should be removed.

www.widevine.com Confidential Page 19 of 76

http://www.widevine.com/

Replay Control and Nonce Requirements

The replay control flag and the nonce enabled flag determine if a license may be used only
once, may be reloaded until released, or may be reloaded indefinitely. An online license may
be loaded only once, and requires a valid nonce from the nonce cache. An online license
may also require that a new entry in the usage table be created. An offline license that is
unlimited does not require a nonce, or a pst. An offline license that can be released requires
a valid nonce and a pst when it is first loaded. On subsequent loads, the nonce does not
have to be valid, but the pst must be found in the usage table. This is summarized in the
following table:

License Type

Replay_Control

Nonce_Enabled

PST required?

Unlimited Offline

0x0 - Session Usage
table not required

O=Ignore Nonce

No. OEMCrypto
ignores pst.

Invalid - server will

0x1 - Nonce required,

O=Ignore Nonce

n/a

not send. create entry in Session
Usage table
Offline 0x2 - Require existing 0O=Ignore Nonce Yes. OEMCrypto

Session Usage table
entry or Nonce

requires PST.

Streaming, no usage
data required

0x0 - Session Usage
table not required

1=Verify Nonce

No. OEMCrypto
ignores pst.

Streaming, usage
data required.

0x1 - Nonce required,
create entry in Session
Usage table

1=Verify Nonce

Yes. OEMCrypto
requires PST.

Invalid - server will
not send.

0x2 - Require existing
Session Usage table
entry or Nonce

1=Verify Nonce

n/a

Content Decryption

OEMCrypto_SelectKey() is used to prepare one of the previously loaded keys for decryption.

www.widevine.com Confidential Page 20 of 76

http://www.widevine.com/

Trusted Environment

selected for
DecryptCTH,

Decrypt, Encrypt,
Sign or Verify
key_id »| content_key_table{key_id] L
S key_data, key_size »| curent_key
apply output
key_control > key_control | controls, e.g.
HOCP

OEMCrypto_SelectKey

Once the content_key is loaded, OEMCrypto_DecryptCTR is used to decrypt content.
enc_key encrypts content_key using AES-128-CBC with random IV. content_key encrypts
content using AES-128-CTR with random [V.

Trusted Environment

: key expired
content_key : 128 e +

l protected buffer (e,g.

firewalled or encrypted)
encrypted ANV buffer data OR

, non-secure buffer
:w v T
out_buffer [

r

OEMCrypto_DecryptCTR()

www.widevine.com Confidential Page 21 of 76

http://www.widevine.com/

RSA Certificate Provisioning and License Requests

This section describes new features added in March, 2013, producing a V2.1 revision to the
license protocol. The basic flow described in the previous sections can be modified to allow
an application to use an RSA signed certificate for license requests instead of the Widevine
Keybox. This allows the license server to grant a license without keeping a list of Widevine
keybox system IDs and system keys. The device obtains a certificate from a provisioning
server using the Widevine keybox as a root of trust. This logic flow adds only four new API
functions because it leverages the existing OEMCrypto API.

Changes to Session

In addition to the existing state variable for a session, such as a nonce table, encryption keys,
the session needs to store an RSA key pair in secure memory.

RSA Certificate Provisioning

There is one API function for provisioning a device with an RSA certificate. The RSA
provisioning request is generated and signed in a similar way to the license request described
above. This is sent to a provisioning server which can decrypt the Widevine keybox and send
a provisioning response back. This response message contains a certificate and an RSA key
pair.

from pravisianing senver

Trusted Environment
@ OEM-secret key
nonce_| cachg :32bx 4 | enc Itey 1128 {signing)
provision_response key #

enc_rsa_key_iv

nonce key HMAC
nonce 'u"erIfI{:EtIDFI
da[a AES 128- clear
2Nc_rsa_key GEI-C.‘. RSA
key AES-128- enc
CBC HSA
mac_key[server] : 256

key
+ key key
provisioning_response > QOEM-secrat key
(encryption)
signature
wragped RSA key

encrypted key, iv |-

A

signature

OEMCrypto_RewrapDeviceRSAKey()

www.widevine.com Confidential Page 22 of 76

http://www.widevine.com/

In the function OEMCrypto_RewrapDeviceRSAKey(), the device uses the encryption key,
generated previously in OEMCrypto_GenerateDerivedKeys(), to decrypt the RSA private key
and store it in secure memory. The device verifies the provisioning response message in
much the same way it does in OEMCrypto_LoadKeys(). After decrypting the RSA key, it
re-encrypts the private key using either the Widevine keybox device key, or an OEM specific
device key --- this is called wrapping the key. This wrapped key is stored on the filesystem
and passed back to the device whenever an RSA signed license request is needed.

Certificate Provisioning using OEMCrypto

Client Device I Provisioning Server

OEMCrypto_OpenSession E:'

|
OEMCrypto_GenerateMonce

Prepare provisioning request message
QEMCrypto_GenerateDerivedkeys

OEMCrypto_GenerateSignature

Signed Provisioning Reguest

-

Signed Provisioning Response

-

T 1]

OEMCrypto_RewrapDeviceRsakey

OEMCrypto_CloseSession

|
|

Save device certificate, encrypted device |
RSA key, and IV in persistent storage ﬂ

|

Client Device I Provisioning Senver

License Request Signed by RSA Certificate

Three functions, OEMCrypto_LoadDeviceRSAKey(), OEMCrypto_GenerateRSASignature(),
and OEMCrypto_DeriveKeysFromSessionKey() are used to implemented the license
exchange protocol when using a device certificate as the device root of trust. The following

www.widevine.com Confidential Page 23 of 76

http://www.widevine.com/

diagram shows OEMCrypto call sequence during the license exchange:

License Exchange using OEMCrypto and Device Certificate

Client Device

OEMCrypto_OpenSession E

|
Generate license request including device certificate L—_I
|

QEMCrypto_GenerateRsaSignature

OEMCrypto_DerivekeysFromSessionkey

|
OEMCrypto_LoadDeviceRsaKey t'
|

7

Signed License Request

License Senver

Signed License + Encrypted Session Key

I "

OEMCrypto_LoadKeys

opt | [media decryption, license renewals]

www.widevine.com

OEMCrypto_CloseSession

Client Device

Confidential

- _ ____

License Senver

Page 24 of 76

http://www.widevine.com/

The first function is OEMCrypto_LoadDeviceRSAKey(), is passed a wrapped RSA key pair. It
unwraps the key pair and stores it in secure memory.

Trusted Environment

OEM-secret key
(encryption)

l key
_— ’"‘EGSE';’C'}EB' —=| 2048 bit RSA private key

wrapped ASA key
encrypted key, iv > ;:IJAJZ%;S

signature

OEM-secret key
isigning)

G

OEMCrypto_LoadDeviceRSAKey()

The second function, OEMCrypto_GenerateRSASignature(), signs a message using the
device RSA private key.

Trusted Environment
to license servar

TF 2048 bit RSA private key

license_request - HSI':SSSS Ar

signature
—

OEMCrypto_GenerateRSASignature()

The third function, OEMCrypto DeriveKeysFromSessionKey(), is similar to
OEMCrypto_GenerateDerivedKeys. It is given an encrypted session key, and two context

www.widevine.com Confidential Page 25 of 76

http://www.widevine.com/

strings. It should decrypt the session key using the private RSA key. Then it uses the
session key to generate an encryption key and mac key.

Inputs:

2048 bit ASA private key
+ key
_ ~ASAOAEP™,

| enc_session_key

Trusted Environment

N\ Lot/

I context_mac

context_enc

He=| 0x02 || context_mac |

Lge| 0x03 Il context_mac |

= Ox04 || context_mac |

001 Il context_mac

| session_key : 128

|
key * ! ‘ key

7 AES-128- AES-128-
" CMAC r CMAC

mac_key[server] : 256

session_key : 128

key #

session_key : 128

keyy

-

0x01 Il context_enc }—' AEE}EHLEB

| enc_key : 128

e
o(AES-128- AES-128-
CMAC r CMAC
£y

[mac_key[client] : 256

www.widevine.com

OEMCrypto_DeriveKeysFromSessionKey()

Confidential

Page 26 of 76

http://www.widevine.com/

Session Usage Table and Reporting

The Session Usage Table is a feature that is new for version 9 of the OEMCrypto API. Its
main two use cases are for reloading keys for offline playback, and for reporting secure stops
for online playback. Both of these use cases require a Session Usage Table that stores
persistent data securely, and a secure clock or timer that cannot be rolled back by the user.
In this section we define what we mean by a secure clock or timer, and describe the table.
The API for reporting usage is described in the section Usage Table API, and in the function
OEMCrypto_LoadKeys, and the decryption functions in the Decryption API.

Keys that are designed for offline playback will need to be loaded several times, without
access to a new license response. The APl is designed so that the first time such a key is
loaded, it must have a valid nhonce matching the license request. The key will then be loaded
into the usage table. For any subsequent calls to LoadKeys, the key will be verified with the
usage table instead of using a nonce, and that session will be associated with the existing
entry in the Usage Table.

Keys that are designed for secure stop will be added to the usage table and will also require a
nonce. After the session using this key is closed, the application will request that the entry in
the table will be marked as inactive. After that, the key cannot be used for decryption, but
usage times will still be available to send to the server for bookkeeping purposes.

The Usage Table will store the start and stop times for when the key was used. With this in
mind, the TEE will have a clock, which we define as:

e Insecure Clock - clock just uses system time.

e Secure Timer - clock uses secure timer when OEMCrypto is active and the system
time when OEMCrypto is inactive.

e Secure Clock - clock is secure when OEMCrypto is active or inactive.

“Secure” means the user cannot modify or update the clock via software.

Even for insecure clocks, OEMCrypto shall force the clock to advance only. If the clock hits
end-of-time and wraps back to 0, every entry in the usage table will be deleted and all keys
will be deleted -- using 64 bits for seconds, this should only happen if the clock is being
modified by a rogue application.

The Session Usage Table stores entries based on a Provider Session Token (or pst). A PST
is associated with a session on the server, and its entry may persist after an OEMCrypto
Session has been closed. Entries in the table may be created from a call to
OEMCrypto_LoadKeys and may be deleted from a call to OEMCrypto_DeleteUsageTable.
The table must be secure from user inspection, modification, or rollback: The table contains
session signing keys, so it must be encrypted or stored in secure memory to prevent
inspection; the table will be used to report usage times, so it must not be user modifiable; and
the session records license release times, so the user should not be able to rollback to a

www.widevine.com Confidential Page 27 of 76

http://www.widevine.com/

previous valid table. The table will be modified when LoadKeys is called or when any of the
Usage Table API functions are called. In particular, during video playback, the table will be
updated approximately once every minute.

If it is not possible to store the entire table in secure memory, the following scheme is
recommended. A Generation Number is stored in secure memory. This number will be
incremented once, every time the table is modified. The same number will be stored in the
table, the table will then be encrypted and signed, and written to the devices file system. The
encryption and signing key should be based on a device specific key, such as the device key
in the keybox.

To allow for accidental system crashes, the system can allow for the table to be rolled back by
one generation number. However, more than one generation will trigger an error and
invalidate the table. When the table is invalidated, all entries will be deleted.

HMAC-SHA256 signature Generation Number
Provider Signing Time @ Time @ 1st Time @ last Status
Token (pst) Keys load key decrypt decrypt

Each entry in the Session Usage table contains the following data.
{
uint64_t time_of license_received; -- set when loadKeys is called.
uinté4_t time_of first _decrypt; -- set when first decrypt is called.
uint64_t time_of last_decrypt; -- updated by refresh keys.
enum USAGE_ENTRY_STATUS status;
uint8_t server_mac_key[MAC_KEY_SIZE];
uint8_t client_mac_key[MAC_KEY_SIZE];
size_t pst_length;
uint8_t pst[variable size];

Because the signing mac keys are sensitive, these keys must be encrypted before saving
them to the file system, or the entire table must be encrypted before saving to the file system.

Because the PST is not of fixed length, the entries in the usage table are also not fixed length.
The table will use the PST value as the key, so each entry in the table will have a unique PST
value.

www.widevine.com Confidential Page 28 of 76

http://www.widevine.com/

When an entry is created, in LoadKeys, the value of time_of license_received is copied from
the secure clock. The server_mac_key and client_mac_key are also copied from the session
to the Usage Table when the entry is created in LoadKeys.

An entry in the Usage Table will be associated with an open session when a call to LoadKeys
is made. This association will be used to update time_of last_decrypt whenever the Usage
Table is updated. The association is not saved with the usage table -- if the entry is to be
updated, a new session will be opened.

While the amount of persistent insecure memory is probably not a significant limitation, the
session usage table must be kept in secure RAM in the TEE, and that will likely impose a limit
on some devices. When out of memory, OEMCrypto should remove entries from the table that
are not associated with a currently open session using LRU (least recently used) on

time_of license _received. There should be room in the table for at least 50 entries.

Entries in the table may have the following status values:
enum UsageEntryStatus {

kUnused = 0, // decrypt not yet called

kActive = 1, // keys not released

klnactive = 2, // keys released

|3

Once an entry has been marked “inactive”, any license or session associated with that entry
in the table may no longer be used to decrypt or encrypt data. The entry will be kept until a
usage report has been sent to the server and an acknowledgement has returned.

Below is the sequence diagram for Session Usage Reporting, which illustrates how the
Session Usage Table will be used to report secure stops for an online streaming license.

www.widevine.com Confidential Page 29 of 76

http://www.widevine.com/

Session Usage Reporting

App MediaDrm/CDM OEMCrypto/TEE Key Server

openSesslon
gatKeyRequest
iy Fequest
Wey requast
add “pst™: prwider_sassm_tukmb
‘ ki pesponse (psl enables usage monilons)
pm-.-'lde}ceyﬁespanse"
LosdHeysi*pst,...]
add riew session lo usage lableb

Decrypl

loop] Iperiodically durlnjpla]rbaﬂt]

DecryptCTR N

last time in sesskon state

update status, stan I:II'HET

RefreshUsageTable() N

1. propegate status and
usags times from open
sessons to PST table
2. save lable T changed

closaSession()
gelSecuraSiops :

CraactivalelsageEntry(pst) ’

ReporUsagepsl, psl reporl) "

usage report

GenerateSignatune N

requast

' reuies|

rzlaase raquest

sat usage table entry
slatus 1o inaclive

Ioad mac_keys from
usage Labhe

e d PG POnSa

warify raleases valrdrl}lb

4

relegsaSacureStons ’

deleteP STENry(pst. msg, Elg'I-E‘t'.l'E]h

App

MediaDrm/CDM

OEMCrypto/TEE

Key Server

www.widevine.com

Confidential

www wehsaquancadiagrams.com

Page 30 of 76

http://www.widevine.com/

OEMCrypto API for CENC

The OEMCrypto APl is defined in the file OEMCryptoCENC.h.

There are five areas exposed by OEMCrypto APlIs:

Crypto Device Control API
Crypto Key Ladder API
Decryption API

Provisioning API

Keybox Access

RSA Certificate Provisioning AP
Usage Table API

Device manufacturers implement the API as a static library, which is linked into the Widevine
DRM plugin.

Crypto Device Control API

The Crypto Device Control API involves initialization of and mode control for the security
hardware. The following table shows the device control methods:

OEMCrypto_Initialize
OEMCrypto_Terminate

OEMCrypto_Initialize

OEMCryptoResult OEMCrypto Initialize (void);

Initializes the crypto hardware.
Parameters
None

Returns
OEMCrypto_SUCCESS success
OEMCrypto_ERROR_INIT_FAILED failed to initialize crypto hardware

www.widevine.com Confidential Page 31 of 76

http://www.widevine.com/

Threading

No other function calls will be made while this function is running. This function will not be
called again before OEMCrypto_Terminate().

Version
This method is supported by all API versions.

OEMCrypto_Terminate
OEMCryptoResult OEMCrypto Terminate (void);
Closes the crypto operation and releases all related resources.

Parameters

None

Returns
OEMCrypto_SUCCESS success
OEMCrypto ERROR_TERMINATE_FAILED failed to de-initialize crypto hardware

Threading

No other OEMCrypto calls are made while this function is running. After this function is
called, no other OEMCrypto calls will be made until another call to OEMCrypto_Initialize() is
made.

Version
This method is supported by all API versions.

Crypto Key Ladder API

The crypto key ladder is a mechanism for staging crypto keys for use by the hardware crypto
engine. Keys are always encrypted for transmission. Before a key can be used, it must be
decrypted (typically using the top key in the key ladder) and then added to the key ladder for
upcoming decryption operations. The Crypto Key Ladder API requires the device to provide
hardware support for AES-128 CTR mode and prevent clear keys from being exposed to the
CPU.

The following table shows the APIs required for key management:

OEMCrypto _OpenSession

www.widevine.com Confidential Page 32 of 76

http://www.widevine.com/

OEMCrypto_CloseSession

OEMCrypto GenerateDerivedKeys

OEMCrypto GenerateNonce

OEMCrypto GenerateSignature

OEMCrypto_|L oadKeys

OEMCrypto_RefreshKeys

OEMCrypto_OpenSession

OEMCryptoResult OEMCrypto OpenSession (OEMCrypto SESSION *session);

Open a new crypto security engine context. The security engine hardware and firmware shall
acquire resources that are needed to support the session, and return a session handle that
identifies that session in future calls.

Parameters
[out] session: an opaque handle that the crypto firmware uses to identify the session.

Returns
OEMCrypto_SUCCESS success
OEMCrypto_ERROR_TOO_MANY_SESSIONS failed because too many sessions are open

OEMCrypto_ ERROR_OPEN_SESSION_FAILED there is a resource issue or the security
engine is not properly initialized.

Threading

No other Open/Close session calls will be made while this function is running. Functions on
existing sessions may be called while this function is active.

Version
This method changed in API version 5.

OEMCrypto_CloseSession
OEMCryptoResult OEMCrypto CloseSession (OEMCrypto SESSION session);

Closes the crypto security engine session and frees any associated resources.

www.widevine.com Confidential Page 33 of 76

http://www.widevine.com/

Parameters
[in] session: handle for the session to be closed.

Returns
OEMCrypto_SUCCESS success
OEMCrypto_ ERROR_INVALID_SESSION no open session with that id.

OEMCrypto_ ERROR_CLOSE_SESSION_FAILED illegal/unrecognized handle or the security
engine is not properly initialized.

Threading

No other Open/Close session calls will be made while this function is running. Functions on
existing sessions may be called while this function is active.

Version
This method changed in API version 5.

OEMCrypto_GenerateDerivedKeys

OEMCryptoResult OEMCrypto GenerateDerivedKeys (OEMCrypto SESSION session,
const uint8 t *mac_key context,
uint32 t mac key context length,
const uint8 t *enc key context,
uint32 t enc key context length);

Generates three secondary keys, mac_key[server], mac_key]client], and encrypt_key, for
handling signing and content key decryption under the license server protocol for AES CTR
mode.

Refer to the License Signing and Verification section above for more details. This function
computes the AES-128-CMAC of the enc_key_context and stores it in secure memory as the
encrypt_key. It then computes four cycles of AES-128-CMAC of the mac_key_context and
stores it in the mac_keys -- the first two cycles generate the mac_key[server] and the second
two cycles generate the mac_key]client]. These two keys will be stored until the next call to
OEMCrypto_LoadKeys().

Parameters
[in] session: handle for the session to be used.

[in] mac_key_context: pointer to memory containing context data for computing the HMAC
generation key.

[in] mac_key_context length: length of the HMAC key context data, in bytes.

[in] enc_key_context: pointer to memory containing context data for computing the encryption
key.
[in] enc_key_ context length: length of the encryption key context data, in bytes.

www.widevine.com Confidential Page 34 of 76

http://www.widevine.com/

Results

mac_key[server]: the 256 bit mac key is generated and stored in secure memory.
mac_keyJclient]: the 256 bit mac key is generated and stored in secure memory.
enc_key: the 128 bit encryption key is generated and stored in secure memory.

Returns

OEMCrypto_SUCCESS success

OEMCrypto ERROR_NO_DEVICE_KEY
OEMCrypto ERROR_INVALID_SESSION
OEMCrypto_ ERROR_INVALID_CONTEXT
OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 8.

OEMCrypto_GenerateNonce

OEMCryptoResult OEMCrypto GenerateNonce (
OEMCrypto SESSION session,
uint32 t* nonce);

Generates a 32-bit nonce to detect possible replay attack on the key control block. The
nonce is stored in secure memory and will be used for the next call to LoadKeys.

Because the nonce will be used to prevent replay attacks, it is desirable that a rogue
application cannot rapidly call this function until a repeated nonce is created randomly. With
this in mind, if more than 20 nonces are requested within one second, OEMCrypto will return
an error after the 20th and not generate any more nonces for the rest of the second. After an
error, if the application waits at least one second before requesting more nonces, then
OEMCrypto will reset the error condition and generate valid nonces again.

Parameters
[in] session: handle for the session to be used.

Results

nonce: the nonce is also stored in secure memory. At least 4 nonces should be stored for
each session.

www.widevine.com Confidential Page 35 of 76

http://www.widevine.com/

Returns

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_INVALID_SESSION
OEMCrypto ERROR_INSUFFICIENT_RESOURCES
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 5.

OEMCrypto_GenerateSignature

OEMCryptoResult OEMCrypto GenerateSignature (
OEMCrypto SESSION session,
const uint8 t* message,
size t message length,
uint8 t* signature,
size t* signature_ length);

Generates a HMAC-SHA256 signature using the mac_key[client] for license request signing
under the license server protocol for AES CTR mode.

NOTE: OEMCrypto_GenerateDerivedKeys() must be called first to establish the
mac_keylclient].

Refer to the License Signing and Verification section above for more details.

Parameters

[in] session: crypto session identifier.

[in] message: pointer to memory containing message to be signed.
[in] message_length: length of the message, in bytes.

[out] signature: pointer to memory to received the computed signature. May be null on the
first call in order to find required buffer size.
[in/out] signature_length: (in) length of the signature buffer, in bytes.

(out) actual length of the signature, in bytes.

Returns

www.widevine.com Confidential Page 36 of 76

http://www.widevine.com/

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_INVALID_SESSION

OEMCrypto ERROR_SHORT_BUFFER if signature buffer is not large enough to hold buffer.
OEMCrypto ERROR_INSUFFICIENT_RESOURCES

OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 8.

OEMCrypto_LoadKeys

OEMCryptoResult OEMCrypto LoadKeys (OEMCrypto SESSION session,
const uint8 t* message,
size t message length,
const uint8 t* signature,
size t signature length,
const uint8 t* enc mac keys iv,
const uint8 t* enc mac keys,
size t num keys,
const OEMCrypto KeyObject* key array,
const uint8 t* pst,
size t pst length);

typedef struct {
const uint8 t* key id;
size t key id length;
const uint8 t* key data iv;
const uint8 t* key data;
size t key data length;
const uint8 t* key control iv;
const uint8 t* key control;

} OEMCrypto KeyObject;

Installs a set of keys for performing decryption in the current session.

The relevant fields have been extracted from the License Response protocol message, but
the entire message and associated signature are provided so the message can be verified
(using HMAC-SHA256 with the derived mac_key[server)). If the signature verification fails,
ignore all other arguments and return OEMCrypto_ ERROR_SIGNATURE_FAILURE.
Otherwise, add the keys to the session context.

The keys will be decrypted using the current encrypt_key (AES-128-CBC) and the IV given in
the KeyObject. Each key control block will be decrypted using the first 128 bits of the

www.widevine.com Confidential Page 37 of 76

http://www.widevine.com/

corresponding content key (AES-128-CBC) and the IV given in the KeyObject.

If it is not null, enc_mac_keys will be used to create new mac_keys. After all keys have been
decrypted and validated, the new mac_keys are decrypted with the current encrypt_key and
the offered IV. The new mac_keys replaces the current mac_keys for future calls to
OEMCrypto_RefreshKeys(). The first 256 bits of the mac_keys become the mac_key[server]
and the following 256 bits of the mac_keys become the mac_key[client]. If enc_mac_keys is
null, then there will not be a call to OEMCrypto_RefreshKeys for this session and the current
mac_keys should remain unchanged.

The mac_key and encrypt_key were generated and stored by the previous call to
OEMCrypto_GenerateDerivedKeys(). The nonce was generated and stored by the previous
call to OEMCrypto_GenerateNonce().

This session’s elapsed time clock is started at 0. The clock will be used in
OEMCrypto_DecryptCTR().

NOTE: OEMCrypto_GenerateDerivedKeys() must be called first to establish the mac_key and
encrypt_key.

Refer to the License Signing and Verification section above for more details.

Verification

The following checks should be performed. If any check fails, an error is returned, and none
of the keys are loaded.

1. The signature of the message shall be computed, and the API shall verify the
computed signature matches the signature passed in. If not, return
OEMCrypto_ ERROR_SIGNATURE_FAILURE. The signature verification shall use a
constant-time algorithm (a signature mismatch will always take the same time as a
successful comparison).

2. The enc_mac_keys pointer must be either null, or point inside the message. If the
pointer enc_mac_keys is not null, the API shall verify that the two pointers
enc mac keys iv and enc mac keys point to locations in the message. l.e.
(message <= p && p < message+message length) for S in each of enc_mac_keys iv,
enc mac_keys. If not, return OEMCrypto_ ERROR_INVALID_CONTEXT.

3. The API shall verify that each pointer in each KeyObject points to a location in the
message. l.e. (message <= p && p < message+message length) forpin each of
key id, key data iv, key data, key control iv, key control. If not, return
OEMCrypto_ ERROR_INVALID_CONTEXT.

4. Each key’s control block, after decryption, shall have a valid verification field. If not,
return OEMCrypto ERROR_INVALID_CONTEXT.

5. If any key control block has the Nonce_Enabled bit set, that key’s Nonce field shall
match the nonce generated by the current nonce. If not, return
OEMCrypto_ERROR_INVALID_NONCE. If there is a match, remove that nonce from
the cache. Note that all the key control blocks in a particular call shall have the same

www.widevine.com Confidential Page 38 of 76

http://www.widevine.com/

nonce value.
6. If the key control block has a nonzero Replay_Control, then the verification described
below is also performed.

Usage Table and Provider Session Token (pst)

If a key control block has a nonzero value for Replay_Control, then all keys in this license will
have the same value. In this case, the following additional checks are performed.

The pointer pst must not be null, and must point to a location in the message. If not, return
OEMCrypto_ ERROR_INVALID_CONTEXT.

e If Replay_Control is 1 = Nonce_Required, then OEMCrypto will perform a nonce check
as described above. OEMCrypto will verify that the table does not already have an
entry for the value of pst passed in as a parameter --- if an entry already exists, an
error OEMCrypto ERROR_INVALID_CONTEXT is returned and no keys are loaded.
OEMCrypto will then create a new entry in the table, and mark this session as using
this new entry. This prevents the license from being loaded more than once, and will
be used for online streaming.

e If Replay_Control is 2 = “Require existing Session Usage table entry or Nonce”, then
OEMCrypto will check the Session Usage table for an existing entry with the same pst.

o If the pstis not in the table yet, a new entry will be created in the table and this
session shall use the new entry. In that case, the nonce will be verified for
each key.

o If an existing usage table entry is found, then this session will use that entry. In
that case, the nonce will not be verified for each key. Also, the entry’s mac
keys will be verified against the current session’s mac keys. This allows an
offline license to be reloaded but maintain continuity of the playback times from
one session to the next.

o If the nonce is not valid and an existing entry is not found, the return error is
OEMCrypto_ ERROR_INVALID_NONCE.

Note: If LoadKeys updates the mac keys, then the new updated mac keys will be used with
the Usage Table -- i.e. the new keys are stored in the usage table when creating a new
entry, or the new keys are verified against those in the usage table if there is an existing entry.
If LoadKeys does not update the mac keys, the existing session mac keys are used.

Sessions that are associated with an entry will need to be able to update and verify the status
of the entry, and the time stamps in the entry.

Devices that do not support the Usage Table will return an if the Replay_Control is nonzero.

Parameters

[in] session: crypto session identifier.

[in] message: pointer to memory containing message to be verified.
[in] message_length: length of the message, in bytes.

[in] signature: pointer to memory containing the signature.

www.widevine.com Confidential Page 39 of 76

http://www.widevine.com/

[in] signature_length: length of the signature, in bytes.

[in] enc_mac_key iv: IV for decrypting new mac_key. Size is 128 bits.

[in] enc_mac_keys: encrypted mac_keys for generating new mac_keys. Size is 512 bits.
[in] num_keys: number of keys present.

[in] key_array: set of keys to be installed.

[in] pst: the Provider Session Token.

[in] pst_length: the length of pst.

Returns

OEMCrypto_SUCCESS success
OEMCrypto_ ERROR_NO_DEVICE_KEY
OEMCrypto_ ERROR_INVALID_SESSION
OEMCrypto ERROR_UNKNOWN_FAILURE
OEMCrypto_ ERROR_INVALID_CONTEXT
OEMCrypto_ ERROR_SIGNATURE_FAILURE
OEMCrypto_ ERROR_INVALID_NONCE
OEMCrypto_ ERROR_TOO_MANY_KEYS

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 9.

OEMCrypto_RefreshKeys

OEMCryptoResult OEMCrypto RefreshKeys (OEMCrypto SESSION session,
const uint8 t* message,
size t message length,
const uint8 t* signature,
size t signature length,
size t num keys,
const OEMCrypto KeyRefreshObject* key array);

typedef struct {
const uint8 t* key id;
size t key id length;
const uint8 t* key control iv;
const uint8 t* key control;
} OEMCrypto KeyRefreshObject;

www.widevine.com Confidential Page 40 of 76

http://www.widevine.com/

Updates an existing set of keys for continuing decryption in the current session.

The relevant fields have been extracted from the Renewal Response protocol message, but
the entire message and associated signature are provided so the message can be verified
(using HMAC-SHA256 with the current mac_key[server]). If any verification step fails, an error
is returned. Otherwise, the key table in trusted memory is updated using the key_control
block. When updating an entry in the table, only the duration, nonce, and nonce_enabled
fields are used. All other key control bits are not modified.

NOTE: OEMCrypto_GenerateDerivedKeys() or OEMCrypto_LoadKeys() must be called first
to establish the mac_key[server].

This session’s elapsed time clock is reset to 0 when this function is called. The elapsed time
clock is used in OEMCrypto_DecryptCTR().

This function does not add keys to the key table. It is only used to update a key control block
license duration. Refer to the License Signing and Verification section above for more details.
This function is used to update the duration of a key, only. It is not used to update key control
bits.

If the KeyRefreshObject’'s key_control_iv is null, then the key_control is not encrypted. If the
key_control_iv is specified, then key_control is encrypted with the first 128 bits of the
corresponding content key.

If the KeyRefreshObject’s key_id is null, then this refresh object should be used to update the
duration of all keys for the current session. In this case, key_control_iv will also be null and
the control block will not be encrypted.

Verification

The following checks should be performed. If any check fails, an error is returned, and none
of the keys are loaded.

1. The signature of the message shall be computed, and the API shall verify the
computed signature matches the signature passed in. If not, return
OEMCrypto_ ERROR_SIGNATURE_FAILURE. The signature verification shall use a
constant-time algorithm (a signature mismatch will always take the same time as a
successful comparison).

2. The API shall verify that each pointer in each KeyObiject points to a location in the
message, or is null. l.e. (message <= p && p < message+message length) for) in
each of key id, key control iv, key control. If not, return
OEMCrypto_ ERROR_INVALID_CONTEXT.

3. Each key’s control block shall have a valid verification field. If not, return
OEMCrypto_ ERROR_INVALID_CONTEXT.

4. If the key control block has the Nonce_Enabled bit set, the Nonce field shall match one
of the nonces in the cache. If not, return OEMCrypto ERROR_INVALID_NONCE. If
there is a match, remove that nonce from the cache. Note that all the key control
blocks in a particular call shall have the same nonce value.

www.widevine.com Confidential Page 41 of 76

http://www.widevine.com/

Parameters

[in] session: handle for the session to be used.

[in] message: pointer to memory containing message to be verified.
[in] message_length: length of the message, in bytes.

[in] signature: pointer to memory containing the signature.

[in] signature_length: length of the signature, in bytes.

[in] num_keys: number of keys present.

[in] key_array: set of key updates.

Returns

OEMCrypto_SUCCESS success

OEMCrypto ERROR_NO_DEVICE_KEY
OEMCrypto_ ERROR_INVALID_SESSION
OEMCrypto_ ERROR_INVALID_CONTEXT
OEMCrypto_ ERROR_SIGNATURE_FAILURE
OEMCrypto_ ERROR_INVALID_NONCE
OEMCrypto ERROR_INSUFFICIENT_RESOURCES
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 8.

Decryption API

Devices that implement the Key Ladder API must also support a secure decode or secure
decode and rendering implementation. This can be done by either decrypting into buffers
secured by hardware protections and providing these secured buffers to the decoder/renderer
or by implementing decrypt operations in the decoder/renderer.

In a Security Level 2 implementation where the video path is not protected, the audio and
video streams are decrypted using OEMCrypto_DecryptCTR() and buffers are returned to the
media player in the clear.

Generic Modular DRM allows an application to encrypt, decrypt, sign and verify arbitrary user
data using a content key. This content key is securely delivered from the server to the client
device using the same factory installed root of trust as a media content keys.

www.widevine.com Confidential Page 42 of 76

http://www.widevine.com/

Trusted Environment

allowed usage
check

current_key : 128 | key_control e

in_buffer

out_buffer

;: .
oo S

data AES-128-
CBC

.

OEMCrypto_Generic_Decrypt{}, OEMCrypto_Generic_Encrypt()

Trusted Environment

allowed usage
check

current_key : 256 key_control e

encrypted buffer data -

signature |«

OEMCrypto_Generic_Sign()

Trusted Environment

allowed usage
check

current_key : 256 key_control e

message

nE

Compare

signature

match -

OEMCrypto_Generic_Verify()

The following table shows the APIs required for decryption:

www.widevine.com

Confidential

Page 43 of 76

http://www.widevine.com/

OEMCrypto_SelectKey
OEMCrypto_DecryptCTR
OEMCrypto_Generic_Encrypt
OEMCrypto_Generic_Decrypt
OEMCrypto_Generic_Sign
OEMCrypto_Generic_Verify

OEMCrypto_SelectKey

OEMCryptoResult OEMCrypto SelectKey (const OEMCrypto SESSION session,
const uint8 t* key id,
size t key id length);

Select a content key and install it in the hardware key ladder for subsequent decryption
operations (OEMCrypto_DecryptCTR()) for this session. The specified key must have been
previously "installed" via OEMCrypto_LoadKeys() or OEMCrypto_RefreshKeys().

A key control block is associated with the key and the session, and is used to configure the
session context. The Key Control data is documented in "Key Control Block Definition".

Step 1: Lookup the content key data via the offered key_id. The key data includes the key
value, and the key control block.

Step 2: Latch the content key into the hardware key ladder. Set permission flags and timers
based on the key's control block.

Step 3: use the latched content key to decrypt (AES-128-CTR) buffers passed in via
OEMCrypto_DecryptCTR(). If the key is 256 bits it will be used for OEMCrypto_Generic_Sign
or OEMCrypto_Generic_Verify as specified in the key control block. Continue to use this key
until OEMCrypto_SelectKey() is called again, or until OEMCrypto_CloseSession() is called.

Parameters

[in] session: crypto session identifier.

[in] key_id: pointer to the Key ID.

[in] key_id_length: length of the Key ID, in bytes.

Returns
OEMCrypto_SUCCESS success
OEMCrypto_ ERROR_INVALID_SESSION crypto session ID invalid or not open

www.widevine.com Confidential Page 44 of 76

http://www.widevine.com/

OEMCrypto_ERROR_NO_DEVICE_KEY failed to decrypt device key
OEMCrypto_ ERROR_NO_CONTENT_KEY failed to decrypt content key
OEMCrypto ERROR_CONTROL_INVALID invalid or unsupported control input
OEMCrypto_ ERROR_KEYBOX_INVALID cannot decrypt and read from Keybox
OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES

OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 8.

OEMCrypto_DecryptCTR

OEMCryptoResult
OEMCrypto DecryptCTR (OEMCrypto SESSION session,
const uint8 t *data addr,
size t data_ length,
bool is encrypted,
const uint8 t *iv,
size t block offset,
const OEMCrypto DestBufferDesc* out buffer,
unit8 t subsample flags);
typedef enum OEMCryptoBufferType {
OEMCrypto BufferType Clear,
OEMCrypto BufferType Secure,
OEMCrypto BufferType Direct
} OEMCrytoBufferType;

typedef struct {
OEMCryptoBufferType type;

union {
struct { // type == OEMCrypto BufferType Clear
uint8 t* address;
size t max length;
} clear;
struct { // type == OEMCrypto BufferType Secure

void* handle;

size t max length;

www.widevine.com Confidential Page 45 of 76

http://www.widevine.com/

size t offset;
} secure;
struct { // type == OEMCrypto BufferType Direct
bool is video;
} direct;
} buffer;
} OEMCrypto DestBufferDesc;

#define OEMCrypto FirstSubsample 1
#define OEMCrypto LastSubsample 2

Decrypts (AES-128-CTR) or copies the payload in the buffer referenced by the *data_addr
parameter into the buffer referenced by the out_buffer parameter, using the session context
indicated by the session parameter. If is_encrypted is true, the content key associated with
the session is latched in the active hardware key ladder and is used for the decryption
operation. If is_encrypted is false, the data is simply copied.

After decryption, the data_length bytes are copied to the location described by out_buffer.
This could be one of

1. The structure out_buffer contains a pointer to a clear text buffer. The OEMCrypto
library shall verify that key control allows data to be returned in clear text. If it is not
authorized, this method should return an error.

The structure out_buffer contains a handle to a secure buffer.

The structure out_buffer indicates that the data should be sent directly to the decoder
and rendered.

wn

NOTES:

IV points to the counter value to be used for the initial encrypted block of the input buffer. The
IV length is the AES block size. For subsequent encrypted AES blocks the IV is calculated by
incrementing the lower 64 bits (byte 8-15) of the IV value used for the previous block. The
counter rolls over to zero when it reaches its maximum value (OXFFFFFFFFFFFFFFFF). The
upper 64 bits (byte 0-7) of the IV do not change.

This method may be called several times before the decrypted data is used. For this reason,
the parameter subsample_flags may be used to optimize decryption. The first buffer in a
chunk of data will have the OEMCrypto_FirstSubsample bit set in subsample_flags. The last
buffer in a chunk of data will have the OEMCrypto_LastSubsample bit set in subsample_flags.
The decrypted data will not be used until after OEMCrypto_LastSubsample has been set. If
an implementation decrypts data immediately, it may ignore subsample_flags.

If the destination buffer is secure, an offset may be specified. DecryptCTR begins storing
data out_buffer->secure.offset bytes after the beginning of the secure buffer.

www.widevine.com Confidential Page 46 of 76

http://www.widevine.com/

If the session has an entry in the Usage Table, then OEMCrypto will update the
time_of _last_decrypt. If the status of the entry is “unused”, then change the status to “active”
and set the time_of _first_decrypt.

Verification

The following checks should be performed if is_encrypted is true. If any check fails, an error
is returned, and no decryption is performed.

1. If the current key’s control block has a nonzero Duration field, then the API shall verify
that the duration is greater than the session’s elapsed time clock. If not, return
OEMCrypto_ ERROR_KEY_EXPIRED.

2. If the current key’s control block has the Data_Path_Type bit set, then the API shall
verify that the output buffer is secure or direct. If not, return
OEMCrypto_ ERROR_DECRYPT_FAILED.

3. If the current key’s control block has the HDCP bit set, then the API shall verify that the
buffer will be displayed locally, or output externally using HDCP only. If not, return
OEMCrypto_ ERROR_INSUFFICIENT_HDCP.

4. If the current key’s control block has a nonzero value for HDCP_Version, then the
current version of HDCP for the device and the display combined will be compared
against the version specified in the control block. If the current version is not at least
as high as that in the control block, then return
OEMCrypto_ ERROR_INSUFFICIENT_HDCP.

5. If the current session has an entry in the Usage Table, and the status of that entry is
“‘inactive”, then return OEMCrypto_ ERROR_INVALID_SESSION.

If the flag is_encrypted is false, then no verification is performed. This call shall copy clear
data even when there are no keys loaded, or there is no selected key.

Parameters

[in] session: crypto session identifier.

[in] data_addr: An unaligned pointer to this segment of the stream.
[in] data_length: The length of this segment of the stream, in bytes.

[in] is_encrypted: True if the buffer described by data_addr, data_length is encrypted. If
is_encrypted is false, only the data_addr and data_length parameters are used. The iv and
offset arguments are ignored.

[in] iv: The initial value block to be used for content decryption.
This is discussed further below.

[in] block_offset: If non-zero, the decryption block boundary is different from the start of the
data. block_offset should be subtracted from data_addr to compute the starting address of the
first decrypted block. The bytes between the decryption block start address and data_addr are
discarded after decryption. It does not adjust the beginning of the source or destination data.
This parameter satisfies 0 < blockoffset < 16.

[in] out_buffer: A caller-owned descriptor that specifies the handling of the decrypted byte

www.widevine.com Confidential Page 47 of 76

http://www.widevine.com/

stream. See OEMCrypto_DestbufferDesc for details.

[in] subsample_flags: bitwise flags indicating if this is the first, middle, or last subsample in a
chunk of data. 1 = first subsample, 2 = last subsample, 3 = both first and last subsample, 0 =
neither first nor last subsample.

Returns

OEMCrypto_ SUCCESS

OEMCrypto ERROR_NO_DEVICE_KEY
OEMCrypto ERROR_INVALID SESSION
OEMCrypto_ ERROR_INVALID_CONTEXT
OEMCrypto ERROR_DECRYPT_FAILED
OEMCrypto ERROR_KEY_EXPIRED

OEMCrypto ERROR_INSUFFICIENT_HDCP
OEMCrypto ERROR_INSUFFICIENT_RESOURCES
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 9.

OEMCrypto_Generic_Encrypt

OEMCryptoResult OEMCrypto Generic Encrypt (
OEMCrypto SESSION session,
const uint8 t* in buffer,
size t buffer length,
const uint8 t* iv,
OEMCrypto Algorithm algorithm,
uint8 t* out buffer);

This function encrypts a generic buffer of data using the current key.

If the session has an entry in the Usage Table, then OEMCrypto will update the
time_of last _decrypt. If the status of the entry is “unused”, then change the status to “active”
and set the time_of_first_decrypt.

Verification
The following checks should be performed. If any check fails, an error is returned, and the
data is not encrypted.

www.widevine.com Confidential Page 48 of 76

http://www.widevine.com/

1. The control bit for the current key shall have the Allow_Encrypt set. If not, return
OEMCrypto_ ERROR_UNKNOWN_FAILURE.

2. If the current key’s control block has a nonzero Duration field, then the API shall verify
that the duration is greater than the session’s elapsed time clock. If not, return
OEMCrypto_ ERROR_KEY_EXPIRED.

3. If the current session has an entry in the Usage Table, and the status of that entry is
“‘inactive”, then return OEMCrypto_ ERROR_INVALID_SESSION.

Parameters

[in] session: crypto session identifier.

[in] in_buffer: pointer to memory containing data to be encrypted.

[in] buffer_length: length of the buffer, in bytes. The algorithm may restrict buffer_length to be
a multiple of block size.

[in] iv: IV for encrypting data. Size is 128 bits.

[in] algorithm: Specifies which encryption algorithm to use.

[out] out_buffer: pointer to buffer in which encrypted data should be stored.

Returns

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_KEY_EXPIRED

OEMCrypto ERROR_NO_DEVICE_KEY
OEMCrypto_ ERROR_INVALID_SESSION
OEMCrypto ERROR_INSUFFICIENT_RESOURCES
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 9.

OEMCrypto_Generic_Decrypt

OEMCryptoResult OEMCrypto Generic Decrypt (
OEMCrypto SESSION session,
const uint8 t* in buffer,
size t buffer length,
const uint8 t* iv,
OEMCrypto Algorithm algorithm,
uint8 t* out buffer);

This function decrypts a generic buffer of data using the current key.

www.widevine.com Confidential Page 49 of 76

http://www.widevine.com/

If the session has an entry in the Usage Table, then OEMCrypto will update the
time_of last_decrypt. If the status of the entry is “unused”, then change the status to “active”
and set the time_of first_decrypt.

Verification
The following checks should be performed. If any check fails, an error is returned, and the
data is not decrypted.

1. The control bit for the current key shall have the Allow_Decrypt set. If not, return
OEMCrypto ERROR_DECRYPT_FAILED.

2. If the current key’s control block has the Data_Path_Type bit set, then return
OEMCrypto ERROR_DECRYPT_FAILED.

3. If the current key’s control block has a nonzero Duration field, then the API shall verify
that the duration is greater than the session’s elapsed time clock. If not, return
OEMCrypto_ ERROR_KEY_EXPIRED.

4. If the current session has an entry in the Usage Table, and the status of that entry is
“‘inactive”, then return OEMCrypto_ ERROR_INVALID_SESSION.

Parameters

[in] session: crypto session identifier.

[in] in_buffer: pointer to memory containing data to be encrypted.

[in] buffer_length: length of the buffer, in bytes. The algorithm may restrict buffer_length to be
a multiple of block size.

[in] iv: IV for encrypting data. Size is 128 bits.

[in] algorithm: Specifies which encryption algorithm to use.

[out] out_buffer: pointer to buffer in which decrypted data should be stored.

Returns

OEMCrypto_SUCCESS success

OEMCrypto ERROR_KEY_EXPIRED

OEMCrypto_ ERROR_DECRYPT_FAILED
OEMCrypto ERROR_NO_DEVICE_KEY
OEMCrypto_ ERROR_INVALID_SESSION
OEMCrypto ERROR_INSUFFICIENT_RESOURCES
OEMCrypto_ ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 9.

www.widevine.com Confidential Page 50 of 76

http://www.widevine.com/

OEMCrypto_Generic_Sign

OEMCryptoResult OEMCrypto Generic Sign(
OEMCrypto SESSION session,
const uint8 t* in buffer,
size t buffer length,
OEMCrypto Algorithm algorithm,
uint8 t* signature,
size t* signature length);

This function signs a generic buffer of data using the current key.

If the session has an entry in the Usage Table, then OEMCrypto will update the

time_of last_decrypt. If the status of the entry is “unused”, then change the status to “active”
and set the time_of _first_decrypt.

Verification

The following checks should be performed. If any check fails, an error is returned, and the
data is not signed.

1. The control bit for the current key shall have the Allow_Sign set.

2. If the current key’s control block has a nonzero Duration field, then the API shall verify
that the duration is greater than the session’s elapsed time clock. If not, return
OEMCrypto ERROR_KEY_EXPIRED.

3. If the current session has an entry in the Usage Table, and the status of that entry is
“‘inactive”, then return OEMCrypto_ ERROR_INVALID_SESSION.

Parameters
[in] session: crypto session identifier.
[in] in_buffer: pointer to memory containing data to be encrypted.
[in] buffer_length: length of the buffer, in bytes.
[in] algorithm: Specifies which algorithm to use.
[out] signature: pointer to buffer in which signature should be stored. May be null on the first
call in order to find required buffer size.
[in/out] signature_length: (in) length of the signature buffer, in bytes.
(out) actual length of the signature

Returns

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_KEY_EXPIRED

OEMCrypto_ ERROR_SHORT_BUFFER if signature buffer is not large enough to hold the
output signature.

OEMCrypto_ ERROR_NO_DEVICE_KEY

OEMCrypto_ ERROR_INVALID_SESSION

OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES

OEMCrypto_ ERROR_UNKNOWN_FAILURE

www.widevine.com Confidential Page 51 of 76

http://www.widevine.com/

Threading
This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 9.

OEMCrypto_Generic_Verify

OEMCryptoResult OEMCrypto Generic Verify (
OEMCrypto SESSION session,
const uint8 t* in buffer,
size t buffer length,
OEMCrypto Algorithm algorithm,
uint8 t* signature,
size t signature length);

This function verifies the signature of a generic buffer of data using the current key.

If the session has an entry in the Usage Table, then OEMCrypto will update the
time_of last_decrypt. If the status of the entry is “unused”, then change the status to “active”
and set the time_of_first_decrypt.

Verification
The following checks should be performed. If any check fails, an error is returned.

1. The control bit for the current key shall have the Allow_Verify set.

2. The signature of the message shall be computed, and the API shall verify the
computed signature matches the signature passed in. If not, return
OEMCrypto_ ERROR_SIGNATURE_FAILURE.

3. The signature verification shall use a constant-time algorithm (a signature mismatch
will always take the same time as a successful comparison).

4. If the current key’s control block has a nonzero Duration field, then the API shall verify
that the duration is greater than the session’s elapsed time clock. If not, return
OEMCrypto_ ERROR_KEY_EXPIRED.

5. If the current session has an entry in the Usage Table, and the status of that entry is
“‘inactive”, then return OEMCrypto_ ERROR_INVALID_SESSION.

Parameters

[in] session: crypto session identifier.

[in] in_buffer: pointer to memory containing data to be encrypted.
[in] buffer_length: length of the buffer, in bytes.

[in] algorithm: Specifies which algorithm to use.

[in] signature: pointer to buffer in which signature resides.

[in] signature_length: length of the signature buffer, in bytes.
Returns

www.widevine.com Confidential Page 52 of 76

http://www.widevine.com/

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_KEY_EXPIRED

OEMCrypto_ ERROR_SIGNATURE_FAILURE
OEMCrypto_ ERROR_NO_DEVICE_KEY
OEMCrypto_ ERROR_INVALID_SESSION
OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES
OEMCrypto_ ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 9.

Provisioning API
Widevine keyboxes are used to establish a root of trust to secure content on a device.

Provisioning a device is related to manufacturing methods. This section describes the API that
installs the Widevine Keybox and the recommended methods for the OEM’s factory
provisioning procedure.

API functions marked as optional may be used by the OEM’s factory provisioning procedure
and implemented in the library, but are not called from the Widevine DRM Plugin during
normal operation. The following table shows the APIs required for provisioning:

OEMCrypto WrapKeybox
OEMCrypto InstallKeybox

OEMCrypto_WrapKeybox

OEMCryptoResult OEMCrypto WrapKeybox (
uint8 t *keybox,
uint32 t keyboxLength,
uint8 t *wrappedKeybox,
uint32 t *wrappedKeyBoxLength,
uint8 t *transportKey
uint32 t transportKeyLength);

During manufacturing, the keybox should be encrypted with the OEM root key and stored on
the file system in a region that will not be erased during factory reset. As described in section
5.5.4, the keybox may be directly encrypted and stored on the device in a single step, or it
may use the two-step WrapKeybox/InstallKeybox approach. When the Widevine DRM plugin

www.widevine.com Confidential Page 53 of 76

http://www.widevine.com/

initializes, it will look for a wrapped keybox in the file /factory/wv.keys and install it into the
security processor by calling OEMCrypto_InstallKeybox().

—| Manufacturing Station H@

—| Trusted Environment |—
rare port e y | derved rom &
Die B %:‘M 0 'fﬂ“l:"'lﬂ‘ﬂ'
__-’/ AES \". Il,.'/ AES h\‘x__
& —a= 128 : wEpkeyboxtransporkey)————8= 128 ——
' Encrypt / ' Decrypt /
= \Decnpt,
Clear Keybox
e R =T
P g R
/factoryiwv keys I'x_ Encrypt /
Read-only
partition
OER Foot Key

Figure 10. OEMCrypto_WrapKeybox Operation

OEMCrypto_WrapKeybox() is used to generate an OEM-encrypted keybox that may be
passed to OEMCrypto_InstallKeybox() for provisioning. The keybox may be either passed in
the clear or previously encrypted with a transport key. If a transport key is supplied, the
keybox is first decrypted with the transport key before being wrapped with the OEM root key.
This function is only needed if the provisioning method involves saving the keybox to
the file system.

Parameters

[in] keybox - pointer to Keybox data to encrypt. May be NULL on the first call to test size of
wrapped keybox. The keybox may either be clear or previously encrypted.

[in] keyboxLength - length the keybox data in bytes

[out] wrappedKeybox — Pointer to wrapped keybox

www.widevine.com Confidential Page 54 of 76

http://www.widevine.com/

[out] wrappedKeyboxLength — Pointer to the length of the wrapped keybox in bytes

[in] transportKey — Optional. AES transport key. If provided, the keybox parameter was
previously encrypted with this key. The keybox will be decrypted with the transport key using
AES-CBC and a null IV.

[in] transportKeyLength — Optional. Number of bytes in the transportKey, if used.

Returns
OEMCrypto_SUCCESS success
OEMCrypto_ ERROR_WRITE_KEYBOX failed to encrypt the keybox

OEMCrypto_ ERROR_SHORT_BUFFER if keybox is provided as NULL, to determine the size
of the wrapped keybox

OEMCrypto_ERROR_INSUFFICIENT_RESOURCES
OEMCrypto_ERROR_NOT_IMPLEMENTED

Threading
This function is not called simultaneously with any other functions

Version
This method is supported in all API versions.

OEMCrypto_InstallKeybox

OEMCryptoResult OEMCrypto InstallKeybox (
uint8 t *keybox, uint32 t keyboxLength);

Decrypts a wrapped keybox and installs it in the security processor. The keybox is
unwrapped then encrypted with the OEM root key. This function is called from the Widevine
DRM plugin at initialization time if there is no valid keybox installed. It looks for a wrapped
keybox in the file /factory/wv.keys and if it is present, will read the file and call
OEMCrypto_InstallKeybox() with the contents of the file.

Parameters
[in] keybox - pointer to encrypted Keybox data as input
[in] keyboxLength - length of the keybox data in bytes

Returns

OEMCrypto_SUCCESS success
OEMCrypto ERROR_BAD_MAGIC
OEMCrypto_ ERROR_BAD_CRC

www.widevine.com Confidential Page 55 of 76

http://www.widevine.com/

OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES

Threading

This function is not called simultaneously with any other functions.

Version
This method is supported in all API versions.

—| Trusted Environment I—

| Widevine DRM Plugin |

OEM Rt Key
Wrapped
Keybox [7] T
I.f/#.ﬁ.ES \‘-..
& installKeybox(j——=| 128 | ——
' Decrypt /
S A
A
Cleaw Keybox
- E‘.-_—-]
-
Sacure storage

Iactorywy keys
Read-only
partition

Figure 11 - Install keybox Operation

Keybox Access and Validation API
Widevine keyboxes establish a root of trust to secure content on a device.

The keybox access API provides an interface for a security processor or general CPU to
access the Widevine Keybox, depending on the security level.

In a Level 1 or Level 2 implementation, only the security processor may access the keys in
the keybox. The following table shows the APIs required for keybox validation:

OEMCrypto IsKeyboxValid

www.widevine.com Confidential Page 56 of 76

http://www.widevine.com/

OEMCrypto_GetDeviceld
OEMCrypto_GetKeyData
OEMCrypto_GetRandom
OEMCrypto_APIVersion
OEMCrypto_SecuritylL evel
OEMCrypto_GetHDCPCapability

OEMCrypto_SupportsUsageTabl
e

OEMCrypto_IsKeyboxValid

OEMCryptoResult OEMCrypto IsKeyboxValid();

Validates the Widevine Keybox loaded into the security processor device. This method
verifies two fields in the keybox:

e Verify the MAGIC field contains a valid signature (such as, ‘k’b”0”x’).
e Compute the CRC using CRC-32-POSIX-1003.2 standard and compare the checksum

to the CRC stored in the Keybox.

The CRC is computed over the entire Keybox excluding the 4 bytes of the CRC (for example,
Keybox[0..123]). For a description of the fields stored in the keybox, see Keybox Definition.

Parameters
none

Returns

OEMCrypto_SUCCESS
OEMCrypto ERROR_BAD_MAGIC
OEMCrypto ERROR_BAD _CRC

Threading
This function may be called simultaneously with any session functions.
Version

This method is supported in all API versions.

OEMCrypto_GetDevicelD

OEMCryptoResult OEMCrypto GetDeviceID (
uint8 t* devicelD,

www.widevine.com Confidential Page 57 of 76

http://www.widevine.com/

uint32 t *idLength);

Retrieve DevicelD from the Keybox.
Parameters

[out] deviceld - pointer to the buffer that receives the Device ID

[in/out] idLength — on input, size of the caller’s device ID buffer. On output, the number of
bytes written into the buffer.

Returns

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_SHORT_BUFFER if the buffer is too small to return device ID
OEMCrypto_ ERROR_NO_DEVICEID failed to return Device Id

Threading
This function may be called simultaneously with any session functions.

Version
This method is supported in all API versions.

OEMCrypto_GetKeyData

OEMCryptoResult OEMCrypto GetKeyData (
uint8 t* keyData, uint32 t *keyDataLength);

Return the Key Data field from the Keybox.

Parameters
[out] keyData - pointer to the buffer to hold the Key Data field from the Keybox

[in/out] keyDatalLength — on input, the allocated buffer size. On output, the number of bytes in
Key Data

Returns

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_SHORT_BUFFER if the buffer is too small to return KeyData
OEMCrypto_ ERROR_NO_KEYDATA

Threading
This function may be called simultaneously with any session functions.

Version

www.widevine.com Confidential Page 58 of 76

http://www.widevine.com/

This method is supported in all API versions.

OEMCrypto_GetRandom

OEMCryptoResult OEMCrypto GetRandom(
uint8 t* randomData, uint32 t datalLength);

Returns a buffer filled with hardware-generated random bytes, if supported by the hardware.

Parameters
[out] randomData - pointer to the buffer that receives random data
[in] dataLength - length of the random data buffer in bytes

Returns

OEMCrypto_SUCCESS success

OEMCrypto ERROR_RNG_FAILED failed to generate random number
OEMCrypto ERROR_RNG_NOT_SUPPORTED function not supported

Threading
This function may be called simultaneously with any session functions.
Version

This method is supported in all API versions.

OEMCrypto_APIVersion

uint32 t OEMCrypto APIVersion();

This function returns the current API version number. Because this API is part of a shared
library, the version number allows the calling application to avoid version mis-match errors.

There is a possibility that some APl methods will be backwards compatible, or backwards
compatible at a reduced security level.

There is no plan to introduce forward-compatibility. Applications will reject a library with a
newer version of the API.

The version specified in this document is 9. Any OEM that returns this version number
guarantees it passes all unit tests associated this version.

Parameters
none

www.widevine.com Confidential Page 59 of 76

http://www.widevine.com/

Returns
The supported API, as specified in the header file OEMCryptoCENC.h.

Threading
This function may be called simultaneously with any other functions.

Version
This method changed in API version 6.

OEMCrypto_SecurityLevel

const char* OEMCrypto SecurityLevel () ;

Returns a string specifying the security level of the library.

Since this function is spoofable, it is not relied on for security purposes. It is for information
only.

Parameters
none

Returns
A null terminated string. Useful value are “L1”, “L2” and “L3".

Threading
This function may be called simultaneously with any other functions.

Version
This method changed in API version 6.

OEMCrypto_GetHDCPCapability

OEMCryptoResult OEMCrypto GetHDCPCapability (HDCP Capability *current,
HDCP Capability *maximum) ;
typedef uint8 t HDCP_Capability;

Returns the maximum HDCP version supported by the device, and the HDCP version
supported by the device and any connected display.

Valid values for HDCP_Capability are:

0x0 - No HDCP supported, no secure data path.
Ox1 - HDCP version 1.0
Ox2 - HDCP version 2.0
0x3 - HDCP version 2.1

www.widevine.com Confidential Page 60 of 76

http://www.widevine.com/

0x4 - HDCP version 2.2
O0xFF - No HDCP device attached/using local display with secure path.

Parameters

[out] current - this is the current HDCP version, based on the device itself, and the display to
which it is connected.

[out] maximum - this is the maximum supported HDCP version for the device, ignoring any
attached device.

Returns
OEMCrypto_SUCCESS
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading
This function may be called simultaneously with any other functions.
Version

This method changed in API version 9.

OEMCrypto_SupportsUsageTable

bool OEMCrypto SupoortsUsageTable () ;

This is used to determine if the device can support a usage table. Since this function is
spoofable, it is not relied on for security purposes. It is for information only. The usage table
is described in the section above.

Parameters
none

Returns
Returns true if the device can maintain a usage table. Returns false otherwise.

Threading
This function may be called simultaneously with any other functions.

Version
This method changed in API version 9.

RSA Certificate Provisioning API

www.widevine.com Confidential Page 61 of 76

http://www.widevine.com/

As an alternative to using the Widevine Keybox device key to sign the license request, this
collection of APIs provide a way to use an RSA signed certificate. The certificate is generated
by a provisioning server, and the certificate is used when communicating with a license
server. Communication with the provisioning server is still authenticated with the keybox.

The following table shows the APIs required for RSA provisioning and licensing:

OEMCrypto RewrapDeviceRSAKey

OEMCrypto LoadDeviceRSAKey

OEMCrypto GenerateRSASignature

OEMCrypto DeriveKeysFromSessionKey

OEMCrypto_RewrapDeviceRSAKey

OEMCryptoResult OEMCrypto RewrapDeviceRSAKey (
OEMCrypto SESSION session,
const uint8 t* message,
size t message length,
const uint8 t* signature,
size t signature length,
uint32 t *nonce,
const uint8 t* enc rsa key,
size t enc rsa key length,
const uint8 t* enc rsa key iv,
uint8 t* wrapped rsa key,
size t *wrapped rsa key length);

Verifies an RSA provisioning response is valid and corresponds to the previous provisioning
request by checking the nonce. The RSA private key is decrypted and stored in secure
memory. The RSA key is then re-encrypted and signed for storage on the filesystem. We
recommend that the OEM use an encryption key and signing key generated using an
algorithm at least as strong as that in GenerateDerivedKeys.

After decrypting enc_rsa_key, If the first four bytes of the buffer are the string “SIGN”, then the
actual RSA key begins on the 9th byte of the buffer. The second four bytes of the buffer is the
32 bit field “allowed_schemes”, of type RSA_Padding_Scheme, which is used in
OEMCrypto_GenerateRSASignature. The value of allowed_schemes must also be wrapped
with RSA key. We recommend storing the magic string “SIGN” with the key to distinguish keys
that have a value for allowed_schemes from those that should use the default
allowed_schemes. Devices that do not support the alternative signing algorithms may refuse
to load these keys and return an error of OEMCrypto ERROR_NOT_IMPLEMENTED. The
main use case for these alternative signing algorithms is to support devices that use x509
certificates for authentication when acting as a ChromeCast receiver. This is not needed for

www.widevine.com Confidential Page 62 of 76

http://www.widevine.com/

devices that wish to send data to a ChromeCast.

If the first four bytes of the buffer enc_rsa_key are not the string “SIGN”, then the default
value of allowed_schemes = 1 (kSign_RSASSA_PSS) will be used.

Verification
The following checks should be performed. If any check fails, an error is returned, and the
key is not loaded.

1. Check that all the pointer values passed into it are within the buffer specified by
message and message_length.

2. Verify that in_wrapped_rsa_key length is large enough to hold the rewrapped key,
returning OEMCRYPTO_ERROR_BUFFER_TOO_SMALL otherwise.

3. Verify that the nonce matches one generated by a previous call to
OEMCrypto_GenerateNonce(). The matching nonce shall be removed from the
nonce table. If there is no matching nonce, return
OEMCRYPTO_ERROR_INVALID NONCE.

4. Verify the message signature, using the derived signing key (mac_key[server]).

5. Decrypt enc_rsa_key using the derived encryption key (enc_key), and
enc_rsa_key_iv.

6. Validate the decrypted RSA device key by verifying that it can be loaded by the RSA
implementation.

7. Generate a random initialization vector and store it in wrapped_rsa_key iv.

8. Re-encrypt the device RSA key with an internal key (such as the OEM key or
Widevine Keybox key) and the generated IV using AES-128-CBC with PKCS#5
padding.

9. Copy the rewrapped key to the buffer specified by wrapped_rsa_key and the size of
the wrapped key to wrapped_rsa_key_length.

Parameters

[in] session: crypto session identifier.

[in] message: pointer to memory containing message to be verified.

[in] message_length: length of the message, in bytes.

[in] signature: pointer to memory containing the HMAC-SHA256 signature for message,
received from the provisioning server.

[in] signature_length: length of the signature, in bytes.

[in] nonce: A pointer to the nonce provided in the provisioning response.

[in] enc_rsa_key: Encrypted device private RSA key received from the provisioning server.
Format is PKCS#8, binary DER encoded, and encrypted with the derived encryption key,
using AES-128-CBC with PKCS#5 padding.

[in] enc_rsa_key_length: length of the encrypted RSA key, in bytes.

[in] enc_rsa_key _iv: IV for decrypting RSA key. Size is 128 bits.

[out] wrapped_rsa_key: pointer to buffer in which encrypted RSA key should be stored. May

www.widevine.com Confidential Page 63 of 76

http://www.widevine.com/

be null on the first call in order to find required buffer size.
[in/out] wrapped_rsa_key_length: (in) length of the encrypted RSA key, in bytes.
(out) actual length of the encrypted RSA key

Returns

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_NO_DEVICE_KEY
OEMCrypto_ ERROR_INVALID_SESSION
OEMCrypto_ ERROR_INVALID_RSA_KEY
OEMCrypto_ ERROR_SIGNATURE_FAILURE
OEMCrypto_ ERROR_INVALID_NONCE
OEMCrypto ERROR_BUFFER_SHORT_BUFFER
OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading
This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 9.

OEMCrypto_LoadDeviceRSAKey

OEMCryptoResult OEMCrypto LoadDeviceRSAKey (
OEMCrypto SESSION session,
const uint8 t* wrapped rsa key,
size t wrapped rsa key length);

Loads a wrapped RSA private key to secure memory for use by this session in future calls to

OEMCrypto_GenerateRSASignature. The wrapped RSA key will be the one verified and

wrapped by OEMCrypto_RewrapDeviceRSAKey. The RSA private key should be stored in

secure memory.

If the bit field “allowed_schemes” was wrapped with this RSA key, its value will be loaded and
stored with the RSA key. If there was not bit field wrapped with the RSA key, the key will use

a default value of 1 = RSASSA-PSS with SHA1.

Verification
The following checks should be performed. If any check fails, an error is returned, and the
RSA key is not loaded.

1. The wrapped key has a valid signature, as described in RewrapDeviceRSAKey.

2. The decrypted key is a valid private RSA key.

3. If a value for allowed_schemes is included with the key, it is a valid value.

www.widevine.com Confidential Page 64 of 76

http://www.widevine.com/

Parameters

[in] session: crypto session identifier.

[in] wrapped_rsa_key: wrapped device RSA key stored on the device. Format is PKCS#8,
binary DER encoded, and encrypted with a key internal to the OEMCrypto instance, using
AES-128-CBC with PKCS#5 padding. This is the wrapped key generated by
OEMCrypto_RewrapDeviceRSAKey.

[in] wrapped_rsa_key_length: length of the wrapped key buffer, in bytes.

Returns

OEMCrypto_SUCCESS success

OEMCrypto ERROR_NO_DEVICE_KEY
OEMCrypto_ ERROR_INVALID_SESSION
OEMCrypto ERROR_INVALID_RSA_KEY
OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version

This method changed in API version 9.

OEMCrypto_GenerateRSASignature

OEMCryptoResult OEMCrypto GenerateRSASignature (
OEMCrypto SESSION session,
const uint8 t* message,
size t message length,
uint8 t* signature,
size t *signature_ length,
RSA Padding Scheme padding_ scheme) ;

typedef uint8 t RSA Padding_ Scheme;

The OEMCrypto_GenerateRSASignature method is used to sign messages using the device
private RSA key, specifically, it is used to sign the initial license request.
Refer to the License Request Signed by RSA Certificate section above for more details.

For devices that wish to be CAST receivers, there is a new RSA padding scheme. The
padding_scheme parameter indicates which hashing and padding is to be applied to the
message so as to generate the encoded message (the modulus-sized block to which the
integer conversion and RSA decryption is applied). The following values are defined:

0x1 - RSASSA-PSS with SHA1.

0x2 - PKCS1 with block type 1 padding (only).

www.widevine.com Confidential Page 65 of 76

http://www.widevine.com/

In the first case, a hash algorithm (SHA1) is first applied to the message, whose length is not
otherwise restricted. In the second case, the "message" is already a digest, so no further
hashing is applied, and the message_length can be no longer than 83 bytes. If the
message_length is greater than 83 bytes OEMCrypto ERROR_SIGNATURE_FAILURE shall
be returned.

The second padding scheme is for devices that use x509 certificates for authentication. The
main example is devices that work as a Cast receiver, like a ChromeCast, not for devices that
wish to send to the Cast device, such as almost all Android devices. OEMs that do not
support x509 certificate authentication need not implement the second scheme and can return
OEMCrypto_ ERROR_NOT_IMPLEMENTED.

Verification

The bitwise AND of the parameter padding_scheme and the RSA key’s allowed_schemes is
computed. If this value is 0, then the signature is not computed and the error

OEMCrypto_ ERROR_INVALID_RSA_KEY is returned.

Parameters
[in] session: crypto session identifier.
[in] message: pointer to memory containing message to be signed.
[in] message_length: length of the message, in bytes.
[out] signature: buffer to hold the message signature. On return, it will contain the message
signature generated with the device private RSA key using RSASSA-PSS. Will be null on the
first call in order to find required buffer size.
[in/out] signature_length: (in) length of the signature buffer, in bytes.
(out) actual length of the signature
[in] padding_scheme: specify which scheme to use for the signature.

Returns

OEMCrypto_SUCCESS success

OEMCrypto ERROR_BUFFER_TOO_SMALL if the signature buffer is too small.
OEMCrypto_ ERROR_INVALID_RSA_KEY

OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES

OEMCrypto_ ERROR_UNKNOWN_FAILURE

OEMCrypto_ ERROR_NOT_IMPLEMENTED - if algorithm > 0, and the device does not
support that algorithm.

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version

www.widevine.com Confidential Page 66 of 76

http://www.widevine.com/

This method changed in API version 9.

OEMCrypto_DeriveKeysFromSessionKey

OEMCryptoResult OEMCrypto DeriveKeysFromSessionKey (
OEMErypto SESSION session,
const uint8 t* enc session key,
size t encigession:keyilength,
const uint8 t *mac key context,
size t mac _key context length,
const uint8 t *enc key context,
size t enc key context length);

Generates three secondary keys, mac_key[server], mac_key]client] and encrypt_key, for
handling signing and content key decryption under the license server protocol for AES CTR
mode.

This function is similar to OEMCrypto_GenerateDerivedKeys, except that it uses a session
key to generate the secondary keys instead of the Widevine Keybox device key. These three
keys will be stored in secure memory until the next call to LoadKeys. The session key is
passed in encrypted by the device RSA public key, and must be decrypted with the RSA
private key before use.

Once the enc_key and mac_keys have been generated, all calls to LoadKeys and
RefreshKeys proceed in the same manner for license requests using RSA or using a
Widevine keybox token.

Verification

If the RSA key’s allowed_schemes is not kSign_RSASSA_PSS, then no keys are derived and
the error OEMCrypto_ ERROR_INVALID_RSA_KEY is returned. An RSA key cannot be used
for both deriving session keys and also for PKCS1 signatures.

Parameters

[in] session: handle for the session to be used.

[in] enc_session_key: session key, encrypted with the device RSA key (from the device
certifcate) using RSA-OAEP.

n_key_l[in] enc_sessioength: length of session_key, in bytes.

[in] mac_key_context: pointer to memory containing context data for computing the HMAC
generation key.

[in] mac_key_context_length: length of the HMAC key context data, in bytes.

[in] enc_key_context: pointer to memory containing context data for computing the encryption
key.

[in] enc_key_context_length: length of the encryption key context data, in bytes.

Results

www.widevine.com Confidential Page 67 of 76

http://www.widevine.com/

mac_key[server]: the 256 bit mac key is generated and stored in secure memory.
mac_keylclient]: the 256 bit mac key is generated and stored in secure memory.
enc_key: the 128 bit encryption key is generated and stored in secure memory.

Returns

OEMCrypto_SUCCESS success

OEMCrypto ERROR_DEVICE_NOT_RSA PROVISIONED
OEMCrypto_ ERROR_INVALID_SESSION

OEMCrypto ERROR_INVALID_CONTEXT

OEMCrypto_ ERROR_INSUFFICIENT_RESOURCES
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function may be called simultaneously with functions on other sessions, but not with
other functions on this session.

Version
This method changed in API version 9.

Usage Table API

The following table shows the APIs required for Usage Table maintenance and reporting:

OEMCrypto_UpdateUsageTable

OEMCrypto DeactivateUsageEntry

OEMCrypto ReportUsage

OEMCrypto DeleteUsageEntry

OEMCrypto DeleteUsageTable

OEMCrypto_UpdateUsageTable

OEMCryptoResult OEMCrypto UpdateUsageTable () ;

OEMCrypto should propagate values from all open sessions to the Session Usage Table. If
any values have changed, increment the generation number, sign, and save the table. During
playback, this function will be called approximately once per minute.

Devices that do not implement a Session Usage Table may return

www.widevine.com Confidential Page 68 of 76

http://www.widevine.com/

OEMCrypto ERROR_NOT_IMPLEMENTED.

Parameters
none

Returns

OEMCrypto_SUCCESS success
OEMCrypto_ ERROR_NOT_IMPLEMENTED
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function will not be called simultaneously with any session functions.

Version
This method changed in API version 9.

OEMCrypto_DeactivateUsageEntry

OEMCryptoResult OEMCrypto DeactivateUsageEntry(uint8 t *pst,

size t pst length);

Find the entry in the Usage Table with a matching PST. Mark the status of that entry as
“‘inactive”. If it corresponds to an open session, the status of that session will also be marked
as “inactive”. Then OEMCrypto will increment Usage Table’s generation number, sign,

encrypt, and save the Usage Table.

If no entry in the Usage Table has a matching PST, return the error
OEMCrypto_ ERROR_INVALID_CONTEXT.

Devices that do not implement a Session Usage Table may return
OEMCrypto_ ERROR_NOT_IMPLEMENTED.

Parameters

[in] pst: pointer to memory containing Provider Session Token.

[in] pst_length: length of the pst, in bytes.

Returns
OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_INVALID_CONTEXT - no entry has matching PST.

OEMCrypto ERROR_NOT_IMPLEMENTED
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading

This function will not be called simultaneously with any session functions.

Version
This method changed in API version 9.

www.widevine.com Confidential

Page 69 of 76

http://www.widevine.com/

OEMCrypto_ReportUsage

OEMCryptoResult OEMCrypto ReportUsage (OEMCrypto SESSION session,
const uint8 t *pst,
size t pst length,
OEMCrypto PST Report *buffer,
size t *buffer length);

typedef struct OEMCrypto PST Report {

uint8 t signature[20] -- HMAC SHAl of the rest of the report.

uint8 t padding[4]; // make int64's word aligned.

int64 t seconds since license received == now - time of license received

int64 t seconds since first decrypt == now - time of first decrypt

int64 t seconds _since last decrypt == now - time of last decrypt

uint8 t (enum OEMCrypto Usage Entry Status) status; -- current status of
pst entry.

uint8 t clock security level;
uint8 t pst length;
uint8 t pst[0];
} _ attribute ((packed)) OEMCrypto PST Report;

If the buffer_length is not sufficient to hold a report structure, set buffer_length and return
OEMCrypto_ ERROR_SHORT_BUFFER.

If no entry in the Usage Table has a matching PST, return the error
OEMCrypto_ ERROR_INVALID_CONTEXT.

OEMCrypto will increment Usage Table’s generation number, sign, encrypt, and save the
Usage Table. This is done, even though the table has not changed, so that a single rollback
cannot undo a call to DeactivateUsageEntry and still report that license as inactive.

The pst_report is filled out by subtracting the times un the Usage Table from the current time
on the secure clock. This is done in case the secure clock is not using UTC time, but is
instead using something like seconds since clock installed.

Valid values for status are:

e (0 =kUnused -- the keys have not been used to decrypt.
e 1 =KActive -- the keys have been used, and have not been deactivated.
e 2 =KkiInactive -- the keys have been marked inactive.

The clock_security level is reported as follows:

e 0 = Insecure Clock - clock just uses system time.

e 1 = Secure Timer - clock uses secure timer, which cannot be modified by user
software, when OEMCrypto is active and the system time when OEMCrypto is
inactive.

www.widevine.com Confidential Page 70 of 76

http://www.widevine.com/

e 2 = Software Secure Clock - clock cannot be modified by user software when
OEMCrypto is active or inactive.

e 3 = Hardware Secure Clock - clock cannot be modified by user software and there are
security features that prevent the user from modifying the clock in hardware, such as a
tamper proof battery.

After pst_report has been filled in, the HMAC SHA1 signature is computed for the buffer from
bytes 20 to the end of the pst field. The signature is computed using the client_mac_key
which is stored in the usage table. The HMAC SHA1 signature is used to prevent a rogue
application from using OMECrypto_GenerateSignature to forge a Usage Report.

This function also copies the client_mac_key and server_mac_key from the Usage Table
entry to the session. They will be used to verify a signature in OEMCrypto_DeleteUsageEntry
below. This session will be associated with the entry in the Usage Table.

Devices that do not implement a Session Usage Table may return
OEMCrypto_ ERROR_NOT_IMPLEMENTED.

Parameters
[in] session: handle for the session to be used.
[in] pst: pointer to memory containing Provider Session Token.
[in] pst_length: length of the pst, in bytes.
[out] buffer: pointer to buffer in which usage report should be stored. May be null on the first
call in order to find required buffer size.
[in/out] buffer_length: (in) length of the report buffer, in bytes.
(out) actual length of the report

Returns

OEMCrypto_SUCCESS success

OEMCrypto_ ERROR_SHORT_BUFFER if report buffer is not large enough to hold the output
signature.

OEMCrypto_ ERROR_INVALID_SESSION no open session with that id.

OEMCrypto_ ERROR_INVALID_CONTEXT - no entry has matching PST.

OEMCrypto ERROR_NOT_IMPLEMENTED

OEMCrypto_ ERROR_UNKNOWN_FAILURE

Threading
This function will not be called simultaneously with any session functions.

Version
This method changed in API version 9.

OEMCrypto_DeleteUsageEntry

OEMCryptoResult OEMCrypto DeleteUsageEntry (OEMCrypto SESSION session,

www.widevine.com Confidential Page 71 of 76

http://www.widevine.com/

const uint8 t* pst,
size t pst length,

const uint8 t *message,
size t message length,
const uint8 t *signature,

size t signature length);

This function verifies the signature of the given message using the session’s mac_key[server]
and the algorithm HMAC-SHA256, and then deletes an entry from the session table. The
session should already be associated with the given entry, from a previous call to
OEMCrypto_ReportUsage.

After performing all verification listed below, and deleting the entry from the Usage Table,
OEMCrypto will increment Usage Table’s generation number, and then sign, encrypt, and
save the Usage Table.

The signature verification shall use a constant-time algorithm (a signature mismatch will
always take the same time as a successful comparison).

Devices that do not implement a Session Usage Table may return
OEMCrypto_ ERROR_NOT_IMPLEMENTED.

Verification
The following checks should be performed. If any check fails, an error is returned.

1. The pointer pst is not null, and points inside the message. If not, return
OEMCrypto_ ERROR_UNKNOWN_FAILURE.

2. The signature of the message shall be computed, and the API shall verify the
computed signature matches the signature passed in. The signature will be computed
using HMAC-SHA256 and the mac_key_server. If they do not match, return
OEMCrypto_ ERROR_SIGNATURE_FAILURE.

3. If the session is not associated with an entry in the Usage Table, return
OEMCrypto_ ERROR_UNKNOWN_FAILURE.

4. |If the pst passed in as a parameter does not match that in the Usage Table, return
OEMCrypto_ ERROR_UNKNOWN_FAILURE.

Parameters

[in] session: handle for the session to be used.

[in] pst: pointer to memory containing Provider Session Token.

[in] pst_length: length of the pst, in bytes.

[in] message: pointer to memory containing message to be verified.
[in] message_length: length of the message, in bytes.

[in] signature: pointer to memory containing the signature.

[in] signature_length: length of the signature, in bytes.

www.widevine.com Confidential Page 72 of 76

http://www.widevine.com/

Returns

OEMCrypto_SUCCESS success

OEMCrypto ERROR_INVALID_SESSION no open session with that id.
OEMCrypto_ ERROR_SIGNATURE_FAILURE

OEMCrypto_ ERROR_NOT_IMPLEMENTED

OEMCrypto ERROR_UNKNOWN_FAILURE

Threading
This function will not be called simultaneously with any session functions.

Version
This method changed in API version 9.

OEMCrypto_DeleteUsageTable

OEMCryptoResult OEMCrypto DeleteUsageTable ()

This is called when the CDM system believes there are major problems or resource issues.
The entire table should be cleaned and a new table should be created.

Parameters

none

Returns

OEMCrypto_SUCCESS success
OEMCrypto ERROR_NOT_IMPLEMENTED
OEMCrypto ERROR_UNKNOWN_FAILURE

Threading
This function will not be called simultaneously with any session functions.

Version
This method changed in API version 9.

Error Codes

This is a list of error codes and their uses.

OEMCrypto_SUCCESS No error.

OEMCrypto_ ERROR_INIT_FAILED Initialization failed.

www.widevine.com Confidential Page 73 of 76

http://www.widevine.com/

OEMCrypto ERROR_TERMINATE_FAILED

Termination failed.

OEMCrypto ERROR_SHORT_BUFFER

Indicates an output buffer is not long
enough to hold its data. Function can
be called again with a larger buffer.

OEMCrypto_ERROR_NO_DEVICE_KEY

Indicates the keybox does not have a
device key. (deprecated)

OEMCrypto ERROR_KEYBOX_INVALID

Indicates Widevine keybox is invalid.

OEMCrypto_ ERROR_NO_KEYDATA

Indicates Widevine keybox is invalid
or does not have any key data.

OEMCrypto ERROR_DECRYPT_FAILED

Indicates DecryptCTR or Generic
Decrypt failed.

OEMCrypto_ ERROR_WRITE_KEYBOX

Keybox could not be installed to
secure memory.

OEMCrypto_ERROR_WRAP_KEYBOX

OEMCrypto_WrapKeybox failed to
encrypt keybox.

OEMCrypto_ ERROR_BAD_MAGIC

Keybox has bad magic field.

OEMCrypto ERROR_BAD_CRC

Keybox has bad CRC field.

OEMCrypto ERROR_NO_DEVICEID

GetDevicelD failed.

OEMCrypto ERROR_RNG_FAILED

GetRandom failed.

OEMCrypto_ERROR _
RNG_NOT_SUPPORTED

GetRandom is not implemented.

OEMCrypto ERROR_OPEN_SESSION_FAILED

OpenSession failed, but not with a
resource issue.

OEMCrypto ERROR_CLOSE_SESSION_FAILED

CloseSession failed on valid session.

OEMCrypto_ ERROR_INVALID_SESSION

Specified session is not open or is in
a corrupted state.

OEMCrypto ERROR_NOT _IMPLEMENTED

WrapKeybox is not implemented.

OEMCrypto_ ERROR_NO_CONTENT_KEY

SelectKey failed to find the specified
Key ID.

OEMCrypto ERROR_CONTROL_INVALID

The control block of the specified key
is not valid. Returned by SelectKey.

www.widevine.com Confidential

Page 74 of 76

http://www.widevine.com/

OEMCrypto_ ERROR_INVALID_CONTEXT

Context for signing or verification is
not valid.

OEMCrypto_ ERROR_SIGNATURE_FAILURE

Could not sign specified buffer.

OEMCrypto_ERROR _
DEVICE_NOT_RSA_PROVISIONED

Session does not have an RSA key
installed.

OEMCrypto ERROR_INVALID_RSA_KEY

RSA key is not valid in
RewrapDeviceRSAKey or
LoadDeviceRSAKey

OEMCrypto ERROR_INVALID_NONCE

Nonce in server response does not
match any in table.

OEMCrypto_ ERROR_KEY_EXPIRED

The current key’s duration has
expired, but is otherwise valid.

OEMCrypto ERROR_TOO_MANY_SESSIONS

Not enough resources to open a new
session.

OEMCrypto_ERROR_TOO_MANY_KEYS

Not enough resources to LoadKeys.

OEMCrypto ERROR _
INSUFFICIENT_RESOURCES

Other resource issues, such as
buffers needed for decryption.

OEMCrypto_ ERROR_INSUFFICIENT_HDCP

An attached display does not support
the minimum HDCP version.

OEMCrypto ERROR_UNKNOWN_FAILURE

Any other error.

RSA Algorithm Details

Message signing and encryption using RSA algorithms shall be used during the license
exchange process. The specific algorithms are RSASSA-PSS (signing) and RSA-OAEP
(encryption). Both of these algorithms use random values in their operation, making them
non-deterministic. These algorithms are described in the PKCS#8 specification.

RSASSA-PSS Details

Message signing using RSASSA-PSS shall be performed using the default algorithm

www.widevine.com

Confidential

Page 75 of 76

http://www.google.com/url?q=http%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5208&sa=D&sntz=1&usg=AFQjCNHFLJmjxnJlVcHylZ0ihy0Swojsyw
http://www.widevine.com/

parameters specified in PKCS#1:

Hash algorithm: SHA1

Mask generation algorithm: SHA1
Salt length: 20 bytes

Trailer field: Oxbc

RSA-OAEP

Message encryption using RSA-OAEP shall be performed using the default algorithm
parameters specified in PKCS#1:

e Hash algorithm: SHA1
e Mask generation algorithm: SHA1
e Algorithm parameters: empty string

www.widevine.com Confidential Page 76 of 76

http://www.widevine.com/

