diff options
Diffstat (limited to 'aes.c')
-rw-r--r-- | aes.c | 264 |
1 files changed, 106 insertions, 158 deletions
@@ -44,23 +44,16 @@ NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) /*****************************************************************************/ // The number of columns comprising a state in AES. This is a constant in AES. Value=4 #define Nb 4 -#define BLOCKLEN 16 // Block length in bytes AES is 128b block only #if defined(AES256) && (AES256 == 1) #define Nk 8 - #define KEYLEN 32 #define Nr 14 - #define keyExpSize 240 #elif defined(AES192) && (AES192 == 1) #define Nk 6 - #define KEYLEN 24 #define Nr 12 - #define keyExpSize 208 #else #define Nk 4 // The number of 32 bit words in a key. - #define KEYLEN 16 // Key length in bytes #define Nr 10 // The number of rounds in AES Cipher. - #define keyExpSize 176 #endif // jcallan@github points out that declaring Multiply as a function @@ -71,23 +64,17 @@ NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0) #endif + + + /*****************************************************************************/ /* Private variables: */ /*****************************************************************************/ // state - array holding the intermediate results during decryption. typedef uint8_t state_t[4][4]; -static state_t* state; -// The array that stores the round keys. -static uint8_t RoundKey[keyExpSize]; -// The Key input to the AES Program -static const uint8_t* Key; -#if defined(CBC) && CBC - // Initial Vector used only for CBC mode - static uint8_t* Iv; -#endif // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM // The numbers below can be computed dynamically trading ROM for RAM - @@ -148,23 +135,30 @@ static const uint8_t Rcon[11] = { /*****************************************************************************/ /* Private functions: */ /*****************************************************************************/ +/* static uint8_t getSBoxValue(uint8_t num) { return sbox[num]; } - +*/ +#define getSBoxValue(num) (sbox[(num)]) +/* static uint8_t getSBoxInvert(uint8_t num) { return rsbox[num]; } +*/ +#define getSBoxInvert(num) (rsbox[(num)]) // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. -static void KeyExpansion(void) +static void KeyExpansion(uint8_t* RoundKey,const uint8_t* Key) { - uint32_t i, k; + unsigned i, j, k; uint8_t tempa[4]; // Used for the column/row operations // The first round key is the key itself. + memcpy(RoundKey,Key,AES_keyExpSize); + /* for (i = 0; i < Nk; ++i) { RoundKey[(i * 4) + 0] = Key[(i * 4) + 0]; @@ -172,16 +166,18 @@ static void KeyExpansion(void) RoundKey[(i * 4) + 2] = Key[(i * 4) + 2]; RoundKey[(i * 4) + 3] = Key[(i * 4) + 3]; } + */ // All other round keys are found from the previous round keys. - //i == Nk - for (; i < Nb * (Nr + 1); ++i) + for (i = Nk; i < Nb * (Nr + 1); ++i) { { - tempa[0] = RoundKey[(i-1) * 4 + 0]; - tempa[1] = RoundKey[(i-1) * 4 + 1]; - tempa[2] = RoundKey[(i-1) * 4 + 2]; - tempa[3] = RoundKey[(i-1) * 4 + 3]; + k=(i-1) * 4; + tempa[0]=RoundKey[k + 0]; + tempa[1]=RoundKey[k + 1]; + tempa[2]=RoundKey[k + 2]; + tempa[3]=RoundKey[k + 3]; + } if (i % Nk == 0) @@ -223,16 +219,30 @@ static void KeyExpansion(void) } } #endif - RoundKey[i * 4 + 0] = RoundKey[(i - Nk) * 4 + 0] ^ tempa[0]; - RoundKey[i * 4 + 1] = RoundKey[(i - Nk) * 4 + 1] ^ tempa[1]; - RoundKey[i * 4 + 2] = RoundKey[(i - Nk) * 4 + 2] ^ tempa[2]; - RoundKey[i * 4 + 3] = RoundKey[(i - Nk) * 4 + 3] ^ tempa[3]; + j=i * 4; k=(i - Nk) * 4; + RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0]; + RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1]; + RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2]; + RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3]; } } +void AES_init_ctx(struct AES_ctx *ctx,const uint8_t* key){ + KeyExpansion(ctx->RoundKey,key); +} +#if defined(CBC) && (CBC == 1) +void AES_init_ctx_iv(struct AES_ctx *ctx,const uint8_t* key,const uint8_t* iv){ + KeyExpansion(ctx->RoundKey,key); + memcpy (ctx->Iv,iv,AES_BLOCKLEN); +} +void AES_ctx_set_iv(struct AES_ctx *ctx,const uint8_t* iv) { + memcpy (ctx->Iv,iv,AES_BLOCKLEN); +} +#endif + // This function adds the round key to state. // The round key is added to the state by an XOR function. -static void AddRoundKey(uint8_t round) +static void AddRoundKey(uint8_t round,state_t *state,uint8_t*RoundKey) { uint8_t i,j; for (i=0;i<4;++i) @@ -246,7 +256,7 @@ static void AddRoundKey(uint8_t round) // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. -static void SubBytes(void) +static void SubBytes(state_t *state) { uint8_t i, j; for (i = 0; i < 4; ++i) @@ -261,7 +271,7 @@ static void SubBytes(void) // The ShiftRows() function shifts the rows in the state to the left. // Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. -static void ShiftRows(void) +static void ShiftRows(state_t *state) { uint8_t temp; @@ -295,7 +305,7 @@ static uint8_t xtime(uint8_t x) } // MixColumns function mixes the columns of the state matrix -static void MixColumns(void) +static void MixColumns(state_t *state) { uint8_t i; uint8_t Tmp,Tm,t; @@ -333,7 +343,7 @@ static uint8_t Multiply(uint8_t x, uint8_t y) // MixColumns function mixes the columns of the state matrix. // The method used to multiply may be difficult to understand for the inexperienced. // Please use the references to gain more information. -static void InvMixColumns(void) +static void InvMixColumns(state_t *state) { int i; uint8_t a, b, c, d; @@ -354,7 +364,7 @@ static void InvMixColumns(void) // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. -static void InvSubBytes(void) +static void InvSubBytes(state_t *state) { uint8_t i,j; for (i = 0; i < 4; ++i) @@ -366,7 +376,7 @@ static void InvSubBytes(void) } } -static void InvShiftRows(void) +static void InvShiftRows(state_t *state) { uint8_t temp; @@ -396,54 +406,54 @@ static void InvShiftRows(void) // Cipher is the main function that encrypts the PlainText. -static void Cipher(void) +static void Cipher(state_t *state,uint8_t*RoundKey) { uint8_t round = 0; // Add the First round key to the state before starting the rounds. - AddRoundKey(0); + AddRoundKey(0,state,RoundKey); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for (round = 1; round < Nr; ++round) { - SubBytes(); - ShiftRows(); - MixColumns(); - AddRoundKey(round); + SubBytes(state); + ShiftRows(state); + MixColumns(state); + AddRoundKey(round,state,RoundKey); } // The last round is given below. // The MixColumns function is not here in the last round. - SubBytes(); - ShiftRows(); - AddRoundKey(Nr); + SubBytes(state); + ShiftRows(state); + AddRoundKey(Nr,state,RoundKey); } -static void InvCipher(void) +static void InvCipher(state_t *state,uint8_t*RoundKey) { uint8_t round=0; // Add the First round key to the state before starting the rounds. - AddRoundKey(Nr); + AddRoundKey(Nr,state,RoundKey); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr-1 rounds are executed in the loop below. for (round = (Nr - 1); round > 0; --round) { - InvShiftRows(); - InvSubBytes(); - AddRoundKey(round); - InvMixColumns(); + InvShiftRows(state); + InvSubBytes(state); + AddRoundKey(round,state,RoundKey); + InvMixColumns(state); } // The last round is given below. // The MixColumns function is not here in the last round. - InvShiftRows(); - InvSubBytes(); - AddRoundKey(0); + InvShiftRows(state); + InvSubBytes(state); + AddRoundKey(0,state,RoundKey); } @@ -453,30 +463,16 @@ static void InvCipher(void) #if defined(ECB) && (ECB == 1) -void AES_ECB_encrypt(const uint8_t* input, const uint8_t* key, uint8_t* output, const uint32_t length) +void AES_ECB_encrypt(struct AES_ctx *ctx,const uint8_t* buf) { - // Copy input to output, and work in-memory on output - memcpy(output, input, length); - state = (state_t*)output; - - Key = key; - KeyExpansion(); - // The next function call encrypts the PlainText with the Key using AES algorithm. - Cipher(); + Cipher((state_t*)buf,ctx->RoundKey); } -void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, const uint32_t length) +void AES_ECB_decrypt(struct AES_ctx *ctx,const uint8_t* buf) { - // Copy input to output, and work in-memory on output - memcpy(output, input, length); - state = (state_t*)output; - - // The KeyExpansion routine must be called before encryption. - Key = key; - KeyExpansion(); - - InvCipher(); + // The next function call decrypts the PlainText with the Key using AES algorithm. + InvCipher((state_t*)buf,ctx->RoundKey); } @@ -489,89 +485,44 @@ void AES_ECB_decrypt(const uint8_t* input, const uint8_t* key, uint8_t *output, #if defined(CBC) && (CBC == 1) -static void XorWithIv(uint8_t* buf) +static void XorWithIv(uint8_t* buf,uint8_t*Iv) { uint8_t i; - for (i = 0; i < BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes! + for (i = 0; i < AES_BLOCKLEN; ++i) //WAS for(i = 0; i < KEYLEN; ++i) but the block in AES is always 128bit so 16 bytes! { buf[i] ^= Iv[i]; } } -void AES_CBC_encrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) +void AES_CBC_encrypt_buffer(struct AES_ctx *ctx,uint8_t* buf, uint32_t length) { uintptr_t i; - uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */ - - // Skip the key expansion if key is passed as 0 - if (0 != key) - { - Key = key; - KeyExpansion(); - } - - if (iv != 0) - { - Iv = (uint8_t*)iv; - } - - for (i = 0; i < length; i += BLOCKLEN) + uint8_t *Iv=ctx->Iv; + for (i = 0; i < length; i += AES_BLOCKLEN) { - memcpy(output, input, BLOCKLEN); - XorWithIv(output); - state = (state_t*)output; - Cipher(); - Iv = output; - input += BLOCKLEN; - output += BLOCKLEN; + XorWithIv(buf,Iv); + Cipher((state_t*)buf,ctx->RoundKey); + Iv = buf; + buf += AES_BLOCKLEN; //printf("Step %d - %d", i/16, i); } - - if (extra) - { - memcpy(output, input, extra); - memset((output + extra), 0, (BLOCKLEN - extra)); - XorWithIv(output); - state = (state_t*)output; - Cipher(); - } + //store Iv in ctx for next call + memcpy(ctx->Iv,Iv,AES_BLOCKLEN); } -void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* iv) +void AES_CBC_decrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, uint32_t length) { uintptr_t i; - uint8_t extra = length % BLOCKLEN; /* Remaining bytes in the last non-full block */ - - // Skip the key expansion if key is passed as 0 - if (0 != key) - { - Key = key; - KeyExpansion(); - } - - // If iv is passed as 0, we continue to encrypt without re-setting the Iv - if (iv != 0) - { - Iv = (uint8_t*)iv; - } - - for (i = 0; i < length; i += BLOCKLEN) + uint8_t storeNextIv[AES_BLOCKLEN]; + for (i = 0; i < length; i += AES_BLOCKLEN) { - memcpy(output, input, BLOCKLEN); - state = (state_t*)output; - InvCipher(); - XorWithIv(output); - Iv = input; - input += BLOCKLEN; - output += BLOCKLEN; + memcpy(storeNextIv, buf, AES_BLOCKLEN); + InvCipher((state_t*)buf,ctx->RoundKey); + XorWithIv(buf,ctx->Iv); + memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN); + buf += AES_BLOCKLEN; } - if (extra) - { - memcpy(output, input, extra); - state = (state_t*)output; - InvCipher(); - } } #endif // #if defined(CBC) && (CBC == 1) @@ -581,38 +532,35 @@ void AES_CBC_decrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, co #if defined(CTR) && (CTR == 1) /* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */ -void AES_CTR_xcrypt_buffer(uint8_t* output, uint8_t* input, uint32_t length, const uint8_t* key, const uint8_t* nonce) +void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, uint32_t length) { - uint8_t buffer[BLOCKLEN], counter[BLOCKLEN]; - - memcpy(counter, nonce, BLOCKLEN); - Key = key; - KeyExpansion(); + uint8_t buffer[AES_BLOCKLEN]; - int j; unsigned i; - for (i = 0; i < length; ++i) + int bi; + for (i = 0,bi=AES_BLOCKLEN; i < length; ++i,bi++) { - if ((i & (BLOCKLEN - 1)) == 0) + if (bi == AES_BLOCKLEN) //we need to regen xor compliment in buffer { - memcpy(buffer, counter, BLOCKLEN); - state = (state_t*)buffer; - Cipher(); + + memcpy(buffer, ctx->Iv, AES_BLOCKLEN); + Cipher((state_t*)buffer,ctx->RoundKey); - /* Increment counter and handle overflow */ - for (j = (BLOCKLEN - 1); j >= 0; --j) + /* Increment Iv and handle overflow */ + for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi) { - counter[j] += 1; + if (ctx->Iv[bi] == 255) { //inc will owerflow + ctx->Iv[bi]=0; + continue; + } + ctx->Iv[bi] += 1; + break; - /* Break if no overflow, keep going otherwise */ - if (counter[j] != 0) - { - break; - } } + bi=0; } - output[i] = (input[i] ^ buffer[(i & (BLOCKLEN - 1))]); + buf[i] = (buf[i] ^ buffer[bi]); } } |