summaryrefslogtreecommitdiffstats
path: root/g4f/api/__init__.py
blob: b19a721b4ec77d86f0acf3790c7bfd46baee93e1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import json
import random
import string
import time

# import requests
from flask import Flask, request
from flask_cors import CORS
# from transformers import AutoTokenizer

from g4f import ChatCompletion

app = Flask(__name__)
CORS(app)


@app.route("/")
def index():
    return "interference api, url: http://127.0.0.1:1337"


@app.route("/chat/completions", methods=["POST"])
def chat_completions():
    model = request.get_json().get("model", "gpt-3.5-turbo")
    stream = request.get_json().get("stream", False)
    messages = request.get_json().get("messages")

    response = ChatCompletion.create(model=model, stream=stream, messages=messages)

    completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28))
    completion_timestamp = int(time.time())

    if not stream:
        return {
            "id": f"chatcmpl-{completion_id}",
            "object": "chat.completion",
            "created": completion_timestamp,
            "model": model,
            "choices": [
                {
                    "index": 0,
                    "message": {
                        "role": "assistant",
                        "content": response,
                    },
                    "finish_reason": "stop",
                }
            ],
            "usage": {
                "prompt_tokens": None,
                "completion_tokens": None,
                "total_tokens": None,
            },
        }

    def streaming():
        for chunk in response:
            completion_data = {
                "id": f"chatcmpl-{completion_id}",
                "object": "chat.completion.chunk",
                "created": completion_timestamp,
                "model": model,
                "choices": [
                    {
                        "index": 0,
                        "delta": {
                            "content": chunk,
                        },
                        "finish_reason": None,
                    }
                ],
            }

            content = json.dumps(completion_data, separators=(",", ":"))
            yield f"data: {content}\n\n"
            time.sleep(0.1)

        end_completion_data = {
            "id": f"chatcmpl-{completion_id}",
            "object": "chat.completion.chunk",
            "created": completion_timestamp,
            "model": model,
            "choices": [
                {
                    "index": 0,
                    "delta": {},
                    "finish_reason": "stop",
                }
            ],
        }
        content = json.dumps(end_completion_data, separators=(",", ":"))
        yield f"data: {content}\n\n"

    return app.response_class(streaming(), mimetype="text/event-stream")


# Get the embedding from huggingface
# def get_embedding(input_text, token):
#     huggingface_token = token
#     embedding_model = "sentence-transformers/all-mpnet-base-v2"
#     max_token_length = 500

#     # Load the tokenizer for the 'all-mpnet-base-v2' model
#     tokenizer = AutoTokenizer.from_pretrained(embedding_model)
#     # Tokenize the text and split the tokens into chunks of 500 tokens each
#     tokens = tokenizer.tokenize(input_text)
#     token_chunks = [
#         tokens[i : i + max_token_length]
#         for i in range(0, len(tokens), max_token_length)
#     ]

#     # Initialize an empty list
#     embeddings = []

#     # Create embeddings for each chunk
#     for chunk in token_chunks:
#         # Convert the chunk tokens back to text
#         chunk_text = tokenizer.convert_tokens_to_string(chunk)

#         # Use the Hugging Face API to get embeddings for the chunk
#         api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}"
#         headers = {"Authorization": f"Bearer {huggingface_token}"}
#         chunk_text = chunk_text.replace("\n", " ")

#         # Make a POST request to get the chunk's embedding
#         response = requests.post(
#             api_url,
#             headers=headers,
#             json={"inputs": chunk_text, "options": {"wait_for_model": True}},
#         )

#         # Parse the response and extract the embedding
#         chunk_embedding = response.json()
#         # Append the embedding to the list
#         embeddings.append(chunk_embedding)

#     # averaging all the embeddings
#     # this isn't very effective
#     # someone a better idea?
#     num_embeddings = len(embeddings)
#     average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)]
#     embedding = average_embedding
#     return embedding


# @app.route("/embeddings", methods=["POST"])
# def embeddings():
#     input_text_list = request.get_json().get("input")
#     input_text = " ".join(map(str, input_text_list))
#     token = request.headers.get("Authorization").replace("Bearer ", "")
#     embedding = get_embedding(input_text, token)

#     return {
#         "data": [{"embedding": embedding, "index": 0, "object": "embedding"}],
#         "model": "text-embedding-ada-002",
#         "object": "list",
#         "usage": {"prompt_tokens": None, "total_tokens": None},
#     }


def run_api():
    app.run(host="0.0.0.0", port=1337)