1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
|
from __future__ import annotations
import time, hashlib
from ..typing import AsyncGenerator
from ..requests import StreamSession
from .base_provider import AsyncGeneratorProvider
class ChatForAi(AsyncGeneratorProvider):
url = "https://chatforai.com"
supports_gpt_35_turbo = True
working = True
@classmethod
async def create_async_generator(
cls,
model: str,
messages: list[dict[str, str]],
**kwargs
) -> AsyncGenerator:
async with StreamSession(impersonate="chrome107") as session:
conversation_id = f"id_{int(time.time())}"
prompt = messages[-1]["content"]
timestamp = int(time.time())
data = {
"conversationId": conversation_id,
"conversationType": "chat_continuous",
"botId": "chat_continuous",
"globalSettings":{
"baseUrl": "https://api.openai.com",
"model": model if model else "gpt-3.5-turbo",
"messageHistorySize": 5,
"temperature": 0.7,
"top_p": 1,
**kwargs
},
"botSettings": {},
"prompt": prompt,
"messages": messages,
"sign": generate_signature(timestamp, conversation_id, prompt),
"timestamp": timestamp
}
async with session.post(f"{cls.url}/api/handle/provider-openai", json=data) as response:
response.raise_for_status()
async for chunk in response.iter_content():
yield chunk.decode()
@classmethod
@property
def params(cls):
params = [
("model", "str"),
("messages", "list[dict[str, str]]"),
("stream", "bool"),
]
param = ", ".join([": ".join(p) for p in params])
return f"g4f.provider.{cls.__name__} supports: ({param})"
def generate_signature(timestamp, id, prompt):
data = f"{timestamp}:{id}:{prompt}:6B46K4pt"
return hashlib.sha256(data.encode()).hexdigest()
|