from __future__ import annotations from dataclasses import dataclass from .Provider import IterListProvider, ProviderType from .Provider import ( Ai4Chat, AIChatFree, AiMathGPT, Airforce, AIUncensored, Allyfy, Bing, Blackbox, ChatGpt, Chatgpt4Online, ChatGptEs, ChatifyAI, Cloudflare, DarkAI, DDG, DeepInfraChat, Free2GPT, FreeGpt, FreeNetfly, Gemini, GeminiPro, GizAI, GigaChat, HuggingChat, HuggingFace, Liaobots, MagickPen, MetaAI, NexraBing, NexraBlackbox, NexraChatGPT, NexraDallE, NexraDallE2, NexraEmi, NexraFluxPro, NexraGeminiPro, NexraMidjourney, NexraQwen, NexraSD15, NexraSDLora, NexraSDTurbo, OpenaiChat, PerplexityLabs, Pi, Pizzagpt, Reka, ReplicateHome, RubiksAI, TeachAnything, Upstage, ) @dataclass(unsafe_hash=True) class Model: """ Represents a machine learning model configuration. Attributes: name (str): Name of the model. base_provider (str): Default provider for the model. best_provider (ProviderType): The preferred provider for the model, typically with retry logic. """ name: str base_provider: str best_provider: ProviderType = None @staticmethod def __all__() -> list[str]: """Returns a list of all model names.""" return _all_models ### Default ### default = Model( name = "", base_provider = "", best_provider = IterListProvider([ DDG, Pizzagpt, ReplicateHome, Upstage, Blackbox, Free2GPT, MagickPen, DeepInfraChat, Airforce, ChatGptEs, ChatifyAI, Cloudflare, AiMathGPT, AIUncensored, DarkAI, ]) ) ############ ### Text ### ############ ### OpenAI ### # gpt-3 gpt_3 = Model( name = 'gpt-3', base_provider = 'OpenAI', best_provider = NexraChatGPT ) # gpt-3.5 gpt_35_turbo = Model( name = 'gpt-3.5-turbo', base_provider = 'OpenAI', best_provider = IterListProvider([DarkAI, NexraChatGPT, Airforce, Liaobots, Allyfy]) ) # gpt-4 gpt_4o = Model( name = 'gpt-4o', base_provider = 'OpenAI', best_provider = IterListProvider([Blackbox, ChatGptEs, DarkAI, NexraChatGPT, Airforce, ChatGpt, Liaobots, OpenaiChat]) ) gpt_4o_mini = Model( name = 'gpt-4o-mini', base_provider = 'OpenAI', best_provider = IterListProvider([DDG, ChatGptEs, FreeNetfly, Pizzagpt, MagickPen, RubiksAI, Liaobots, ChatGpt, Airforce, OpenaiChat]) ) gpt_4_turbo = Model( name = 'gpt-4-turbo', base_provider = 'OpenAI', best_provider = IterListProvider([Liaobots, Airforce, ChatGpt, Bing]) ) gpt_4 = Model( name = 'gpt-4', base_provider = 'OpenAI', best_provider = IterListProvider([Chatgpt4Online, Ai4Chat, NexraBing, NexraChatGPT, ChatGpt, Airforce, Bing, OpenaiChat, gpt_4_turbo.best_provider, gpt_4o.best_provider, gpt_4o_mini.best_provider]) ) # o1 o1 = Model( name = 'o1', base_provider = 'OpenAI', best_provider = None ) o1_mini = Model( name = 'o1-mini', base_provider = 'OpenAI', best_provider = None ) ### GigaChat ### gigachat = Model( name = 'GigaChat:latest', base_provider = 'gigachat', best_provider = GigaChat ) ### Meta ### meta = Model( name = "meta-ai", base_provider = "Meta", best_provider = MetaAI ) # llama 2 llama_2_7b = Model( name = "llama-2-7b", base_provider = "Meta Llama", best_provider = IterListProvider([Cloudflare, Airforce]) ) llama_2_13b = Model( name = "llama-2-13b", base_provider = "Meta Llama", best_provider = Airforce ) # llama 3 llama_3_8b = Model( name = "llama-3-8b", base_provider = "Meta Llama", best_provider = IterListProvider([Cloudflare, Airforce]) ) llama_3_70b = Model( name = "llama-3-70b", base_provider = "Meta Llama", best_provider = IterListProvider([ReplicateHome, Airforce]) ) # llama 3.1 llama_3_1_8b = Model( name = "llama-3.1-8b", base_provider = "Meta Llama", best_provider = IterListProvider([Blackbox, DeepInfraChat, Cloudflare, Airforce, PerplexityLabs]) ) llama_3_1_70b = Model( name = "llama-3.1-70b", base_provider = "Meta Llama", best_provider = IterListProvider([DDG, DeepInfraChat, Blackbox, TeachAnything, DarkAI, AiMathGPT, RubiksAI, Airforce, HuggingChat, HuggingFace, PerplexityLabs]) ) llama_3_1_405b = Model( name = "llama-3.1-405b", base_provider = "Meta Llama", best_provider = IterListProvider([Blackbox, DarkAI, Airforce]) ) # llama 3.2 llama_3_2_1b = Model( name = "llama-3.2-1b", base_provider = "Meta Llama", best_provider = IterListProvider([Cloudflare, Airforce]) ) llama_3_2_3b = Model( name = "llama-3.2-3b", base_provider = "Meta Llama", best_provider = IterListProvider([Airforce]) ) llama_3_2_11b = Model( name = "llama-3.2-11b", base_provider = "Meta Llama", best_provider = IterListProvider([HuggingChat, Airforce, HuggingFace]) ) llama_3_2_90b = Model( name = "llama-3.2-90b", base_provider = "Meta Llama", best_provider = IterListProvider([Airforce]) ) # llamaguard llamaguard_7b = Model( name = "llamaguard-7b", base_provider = "Meta Llama", best_provider = Airforce ) llamaguard_2_8b = Model( name = "llamaguard-2-8b", base_provider = "Meta Llama", best_provider = Airforce ) llamaguard_3_8b = Model( name = "llamaguard-3-8b", base_provider = "Meta Llama", best_provider = Airforce ) llamaguard_3_11b = Model( name = "llamaguard-3-11b", base_provider = "Meta Llama", best_provider = Airforce ) ### Mistral ### mistral_7b = Model( name = "mistral-7b", base_provider = "Mistral", best_provider = IterListProvider([Free2GPT, Airforce]) ) mixtral_8x7b = Model( name = "mixtral-8x7b", base_provider = "Mistral", best_provider = IterListProvider([DDG, ReplicateHome, Airforce]) ) mixtral_8x22b = Model( name = "mixtral-8x22b", base_provider = "Mistral", best_provider = IterListProvider([Airforce]) ) mistral_nemo = Model( name = "mistral-nemo", base_provider = "Mistral", best_provider = IterListProvider([HuggingChat, HuggingFace]) ) ### NousResearch ### hermes_2 = Model( name = "hermes-2", base_provider = "NousResearch", best_provider = Airforce ) hermes_2_dpo = Model( name = "hermes-2-dpo", base_provider = "NousResearch", best_provider = Airforce ) hermes_3 = Model( name = "hermes-3", base_provider = "NousResearch", best_provider = IterListProvider([HuggingChat, HuggingFace]) ) ### Microsoft ### phi_2 = Model( name = "phi-2", base_provider = "Microsoft", best_provider = IterListProvider([Cloudflare, Airforce]) ) phi_3_medium_4k = Model( name = "phi-3-medium-4k", base_provider = "Microsoft", best_provider = None ) phi_3_5_mini = Model( name = "phi-3.5-mini", base_provider = "Microsoft", best_provider = IterListProvider([HuggingChat, HuggingFace]) ) ### Google DeepMind ### # gemini gemini_pro = Model( name = 'gemini-pro', base_provider = 'Google DeepMind', best_provider = IterListProvider([GeminiPro, Blackbox, AIChatFree, FreeGpt, NexraGeminiPro, Airforce, Liaobots]) ) gemini_flash = Model( name = 'gemini-flash', base_provider = 'Google DeepMind', best_provider = IterListProvider([Blackbox, GizAI, Airforce, Liaobots]) ) gemini = Model( name = 'gemini', base_provider = 'Google DeepMind', best_provider = Gemini ) # gemma gemma_2b = Model( name = 'gemma-2b', base_provider = 'Google', best_provider = IterListProvider([ReplicateHome, Airforce]) ) gemma_2b_27b = Model( name = 'gemma-2b-27b', base_provider = 'Google', best_provider = IterListProvider([Airforce]) ) gemma_7b = Model( name = 'gemma-7b', base_provider = 'Google', best_provider = Cloudflare ) # gemma 2 gemma_2_9b = Model( name = 'gemma-2-9b', base_provider = 'Google', best_provider = Airforce ) ### Anthropic ### claude_2_1 = Model( name = 'claude-2.1', base_provider = 'Anthropic', best_provider = Liaobots ) # claude 3 claude_3_opus = Model( name = 'claude-3-opus', base_provider = 'Anthropic', best_provider = IterListProvider([Liaobots]) ) claude_3_sonnet = Model( name = 'claude-3-sonnet', base_provider = 'Anthropic', best_provider = IterListProvider([Liaobots]) ) claude_3_haiku = Model( name = 'claude-3-haiku', base_provider = 'Anthropic', best_provider = IterListProvider([DDG, Liaobots]) ) # claude 3.5 claude_3_5_sonnet = Model( name = 'claude-3.5-sonnet', base_provider = 'Anthropic', best_provider = IterListProvider([Blackbox, Liaobots]) ) ### Reka AI ### reka_core = Model( name = 'reka-core', base_provider = 'Reka AI', best_provider = Reka ) ### Blackbox AI ### blackboxai = Model( name = 'blackboxai', base_provider = 'Blackbox AI', best_provider = IterListProvider([Blackbox, NexraBlackbox]) ) blackboxai_pro = Model( name = 'blackboxai-pro', base_provider = 'Blackbox AI', best_provider = Blackbox ) ### Databricks ### dbrx_instruct = Model( name = 'dbrx-instruct', base_provider = 'Databricks', best_provider = IterListProvider([Airforce]) ) ### CohereForAI ### command_r_plus = Model( name = 'command-r-plus', base_provider = 'CohereForAI', best_provider = HuggingChat ) ### Qwen ### # qwen 1_5 qwen_1_5_5b = Model( name = 'qwen-1.5-5b', base_provider = 'Qwen', best_provider = Cloudflare ) qwen_1_5_7b = Model( name = 'qwen-1.5-7b', base_provider = 'Qwen', best_provider = Cloudflare ) qwen_1_5_8b = Model( name = 'qwen-1.5-8b', base_provider = 'Qwen', best_provider = Cloudflare ) qwen_1_5_14b = Model( name = 'qwen-1.5-14b', base_provider = 'Qwen', best_provider = IterListProvider([Cloudflare]) ) # qwen 2 qwen_2_72b = Model( name = 'qwen-2-72b', base_provider = 'Qwen', best_provider = IterListProvider([DeepInfraChat, HuggingChat, Airforce, HuggingFace]) ) qwen_2_5_7b = Model( name = 'qwen-2-5-7b', base_provider = 'Qwen', best_provider = Airforce ) qwen_2_5_72b = Model( name = 'qwen-2-5-72b', base_provider = 'Qwen', best_provider = Airforce ) qwen = Model( name = 'qwen', base_provider = 'Qwen', best_provider = NexraQwen ) ### Upstage ### solar_10_7b = Model( name = 'solar-10-7b', base_provider = 'Upstage', best_provider = Airforce ) solar_mini = Model( name = 'solar-mini', base_provider = 'Upstage', best_provider = Upstage ) solar_pro = Model( name = 'solar-pro', base_provider = 'Upstage', best_provider = Upstage ) ### Inflection ### pi = Model( name = 'pi', base_provider = 'Inflection', best_provider = Pi ) ### DeepSeek ### deepseek_coder = Model( name = 'deepseek-coder', base_provider = 'DeepSeek', best_provider = Airforce ) ### WizardLM ### wizardlm_2_8x22b = Model( name = 'wizardlm-2-8x22b', base_provider = 'WizardLM', best_provider = IterListProvider([DeepInfraChat, Airforce]) ) ### Yorickvp ### llava_13b = Model( name = 'llava-13b', base_provider = 'Yorickvp', best_provider = ReplicateHome ) ### OpenBMB ### minicpm_llama_3_v2_5 = Model( name = 'minicpm-llama-3-v2.5', base_provider = 'OpenBMB', best_provider = None ) ### Lzlv ### lzlv_70b = Model( name = 'lzlv-70b', base_provider = 'Lzlv', best_provider = None ) ### OpenChat ### openchat_3_6_8b = Model( name = 'openchat-3.6-8b', base_provider = 'OpenChat', best_provider = None ) ### Phind ### phind_codellama_34b_v2 = Model( name = 'phind-codellama-34b-v2', base_provider = 'Phind', best_provider = None ) ### Cognitive Computations ### dolphin_2_9_1_llama_3_70b = Model( name = 'dolphin-2.9.1-llama-3-70b', base_provider = 'Cognitive Computations', best_provider = None ) ### x.ai ### grok_2 = Model( name = 'grok-2', base_provider = 'x.ai', best_provider = Liaobots ) grok_2_mini = Model( name = 'grok-2-mini', base_provider = 'x.ai', best_provider = Liaobots ) grok_beta = Model( name = 'grok-beta', base_provider = 'x.ai', best_provider = Liaobots ) ### Perplexity AI ### sonar_online = Model( name = 'sonar-online', base_provider = 'Perplexity AI', best_provider = IterListProvider([PerplexityLabs]) ) sonar_chat = Model( name = 'sonar-chat', base_provider = 'Perplexity AI', best_provider = PerplexityLabs ) ### Nvidia ### nemotron_70b = Model( name = 'nemotron-70b', base_provider = 'Nvidia', best_provider = IterListProvider([HuggingChat, HuggingFace]) ) ### Teknium ### openhermes_2_5 = Model( name = 'openhermes-2.5', base_provider = 'Teknium', best_provider = Airforce ) ### Pawan ### cosmosrp = Model( name = 'cosmosrp', base_provider = 'Pawan', best_provider = Airforce ) ### Liquid ### lfm_40b = Model( name = 'lfm-40b', base_provider = 'Liquid', best_provider = Airforce ) ### DiscoResearch ### german_7b = Model( name = 'german-7b', base_provider = 'DiscoResearch', best_provider = Airforce ) ### HuggingFaceH4 ### zephyr_7b = Model( name = 'zephyr-7b', base_provider = 'HuggingFaceH4', best_provider = Airforce ) ############# ### Image ### ############# ### Stability AI ### sdxl_turbo = Model( name = 'sdxl-turbo', base_provider = 'Stability AI', best_provider = NexraSDTurbo ) sdxl_lora = Model( name = 'sdxl-lora', base_provider = 'Stability AI', best_provider = NexraSDLora ) sdxl = Model( name = 'sdxl', base_provider = 'Stability AI', best_provider = IterListProvider([ReplicateHome, Airforce]) ) sd_1_5 = Model( name = 'sd-1.5', base_provider = 'Stability AI', best_provider = IterListProvider([NexraSD15]) ) sd_3 = Model( name = 'sd-3', base_provider = 'Stability AI', best_provider = ReplicateHome ) ### Playground ### playground_v2_5 = Model( name = 'playground-v2.5', base_provider = 'Playground AI', best_provider = ReplicateHome ) ### Flux AI ### flux = Model( name = 'flux', base_provider = 'Flux AI', best_provider = IterListProvider([Blackbox, AIUncensored, Airforce]) ) flux_pro = Model( name = 'flux-pro', base_provider = 'Flux AI', best_provider = IterListProvider([NexraFluxPro]) ) flux_realism = Model( name = 'flux-realism', base_provider = 'Flux AI', best_provider = IterListProvider([Airforce]) ) flux_anime = Model( name = 'flux-anime', base_provider = 'Flux AI', best_provider = Airforce ) flux_3d = Model( name = 'flux-3d', base_provider = 'Flux AI', best_provider = Airforce ) flux_disney = Model( name = 'flux-disney', base_provider = 'Flux AI', best_provider = Airforce ) flux_pixel = Model( name = 'flux-pixel', base_provider = 'Flux AI', best_provider = Airforce ) flux_4o = Model( name = 'flux-4o', base_provider = 'Flux AI', best_provider = Airforce ) flux_schnell = Model( name = 'flux-schnell', base_provider = 'Flux AI', best_provider = IterListProvider([ReplicateHome]) ) ### OpenAI ### dalle_2 = Model( name = 'dalle-2', base_provider = 'OpenAI', best_provider = NexraDallE2 ) dalle = Model( name = 'dalle', base_provider = 'OpenAI', best_provider = NexraDallE ) ### Midjourney ### midjourney = Model( name = 'midjourney', base_provider = 'Midjourney', best_provider = NexraMidjourney ) ### Other ### emi = Model( name = 'emi', base_provider = '', best_provider = NexraEmi ) any_dark = Model( name = 'any-dark', base_provider = '', best_provider = Airforce ) class ModelUtils: """ Utility class for mapping string identifiers to Model instances. Attributes: convert (dict[str, Model]): Dictionary mapping model string identifiers to Model instances. """ convert: dict[str, Model] = { ############ ### Text ### ############ ### OpenAI ### # gpt-3 'gpt-3': gpt_3, # gpt-3.5 'gpt-3.5-turbo': gpt_35_turbo, # gpt-4 'gpt-4o': gpt_4o, 'gpt-4o-mini': gpt_4o_mini, 'gpt-4': gpt_4, 'gpt-4-turbo': gpt_4_turbo, # o1 'o1': o1, 'o1-mini': o1_mini, ### Meta ### "meta-ai": meta, # llama-2 'llama-2-7b': llama_2_7b, 'llama-2-13b': llama_2_13b, # llama-3 'llama-3-8b': llama_3_8b, 'llama-3-70b': llama_3_70b, # llama-3.1 'llama-3.1-8b': llama_3_1_8b, 'llama-3.1-70b': llama_3_1_70b, 'llama-3.1-405b': llama_3_1_405b, # llama-3.2 'llama-3.2-1b': llama_3_2_1b, 'llama-3.2-3b': llama_3_2_3b, 'llama-3.2-11b': llama_3_2_11b, 'llama-3.2-90b': llama_3_2_90b, # llamaguard 'llamaguard-7b': llamaguard_7b, 'llamaguard-2-8b': llamaguard_2_8b, 'llamaguard-3-8b': llamaguard_3_8b, 'llamaguard-3-11b': llamaguard_3_11b, ### Mistral ### 'mistral-7b': mistral_7b, 'mixtral-8x7b': mixtral_8x7b, 'mixtral-8x22b': mixtral_8x22b, 'mistral-nemo': mistral_nemo, ### NousResearch ### 'hermes-2': hermes_2, 'hermes-2-dpo': hermes_2_dpo, 'hermes-3': hermes_3, ### Microsoft ### 'phi-2': phi_2, 'phi_3_medium-4k': phi_3_medium_4k, 'phi-3.5-mini': phi_3_5_mini, ### Google ### # gemini 'gemini': gemini, 'gemini-pro': gemini_pro, 'gemini-flash': gemini_flash, # gemma 'gemma-2b': gemma_2b, 'gemma-2b-27b': gemma_2b_27b, 'gemma-7b': gemma_7b, # gemma-2 'gemma-2-9b': gemma_2_9b, ### Anthropic ### 'claude-2.1': claude_2_1, # claude 3 'claude-3-opus': claude_3_opus, 'claude-3-sonnet': claude_3_sonnet, 'claude-3-haiku': claude_3_haiku, # claude 3.5 'claude-3.5-sonnet': claude_3_5_sonnet, ### Reka AI ### 'reka-core': reka_core, ### Blackbox AI ### 'blackboxai': blackboxai, 'blackboxai-pro': blackboxai_pro, ### CohereForAI ### 'command-r+': command_r_plus, ### Databricks ### 'dbrx-instruct': dbrx_instruct, ### GigaChat ### 'gigachat': gigachat, ### Qwen ### 'qwen': qwen, # qwen 1.5 'qwen-1.5-5b': qwen_1_5_5b, 'qwen-1.5-7b': qwen_1_5_7b, 'qwen-1.5-8b': qwen_1_5_8b, 'qwen-1.5-14b': qwen_1_5_14b, # qwen 2 'qwen-2-72b': qwen_2_72b, # qwen 2-5 'qwen-2-5-7b': qwen_2_5_7b, 'qwen-2-5-72b': qwen_2_5_72b, ### Upstage ### 'solar-10-7b': solar_10_7b, 'solar-mini': solar_mini, 'solar-pro': solar_pro, ### Inflection ### 'pi': pi, ### DeepSeek ### 'deepseek-coder': deepseek_coder, ### Yorickvp ### 'llava-13b': llava_13b, ### WizardLM ### 'wizardlm-2-8x22b': wizardlm_2_8x22b, ### OpenBMB ### 'minicpm-llama-3-v2.5': minicpm_llama_3_v2_5, ### Lzlv ### 'lzlv-70b': lzlv_70b, ### OpenChat ### 'openchat-3.6-8b': openchat_3_6_8b, ### Phind ### 'phind-codellama-34b-v2': phind_codellama_34b_v2, ### Cognitive Computations ### 'dolphin-2.9.1-llama-3-70b': dolphin_2_9_1_llama_3_70b, ### x.ai ### 'grok-2': grok_2, 'grok-2-mini': grok_2_mini, 'grok-beta': grok_beta, ### Perplexity AI ### 'sonar-online': sonar_online, 'sonar-chat': sonar_chat, ### TheBloke ### 'german-7b': german_7b, ### Nvidia ### 'nemotron-70b': nemotron_70b, ### Teknium ### 'openhermes-2.5': openhermes_2_5, ### Pawan ### 'cosmosrp': cosmosrp, ### Liquid ### 'lfm-40b': lfm_40b, ### DiscoResearch ### 'german-7b': german_7b, ### HuggingFaceH4 ### 'zephyr-7b': zephyr_7b, ############# ### Image ### ############# ### Stability AI ### 'sdxl': sdxl, 'sdxl-lora': sdxl_lora, 'sdxl-turbo': sdxl_turbo, 'sd-1.5': sd_1_5, 'sd-3': sd_3, ### Playground ### 'playground-v2.5': playground_v2_5, ### Flux AI ### 'flux': flux, 'flux-pro': flux_pro, 'flux-realism': flux_realism, 'flux-anime': flux_anime, 'flux-3d': flux_3d, 'flux-disney': flux_disney, 'flux-pixel': flux_pixel, 'flux-4o': flux_4o, 'flux-schnell': flux_schnell, ### OpenAI ### 'dalle': dalle, 'dalle-2': dalle_2, ### Midjourney ### 'midjourney': midjourney, ### Other ### 'emi': emi, 'any-dark': any_dark, } _all_models = list(ModelUtils.convert.keys())