summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/nexra
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--g4f/Provider/nexra/NexraBing.py93
-rw-r--r--g4f/Provider/nexra/NexraBlackbox.py100
-rw-r--r--g4f/Provider/nexra/NexraChatGPT.py285
-rw-r--r--g4f/Provider/nexra/NexraDallE.py63
-rw-r--r--g4f/Provider/nexra/NexraDallE2.py63
-rw-r--r--g4f/Provider/nexra/NexraEmi.py63
-rw-r--r--g4f/Provider/nexra/NexraFluxPro.py70
-rw-r--r--g4f/Provider/nexra/NexraGeminiPro.py86
-rw-r--r--g4f/Provider/nexra/NexraMidjourney.py63
-rw-r--r--g4f/Provider/nexra/NexraProdiaAI.py151
-rw-r--r--g4f/Provider/nexra/NexraQwen.py86
-rw-r--r--g4f/Provider/nexra/NexraSD15.py72
-rw-r--r--g4f/Provider/nexra/NexraSDLora.py69
-rw-r--r--g4f/Provider/nexra/NexraSDTurbo.py69
-rw-r--r--g4f/Provider/nexra/__init__.py14
15 files changed, 1347 insertions, 0 deletions
diff --git a/g4f/Provider/nexra/NexraBing.py b/g4f/Provider/nexra/NexraBing.py
new file mode 100644
index 00000000..28f0b117
--- /dev/null
+++ b/g4f/Provider/nexra/NexraBing.py
@@ -0,0 +1,93 @@
+from __future__ import annotations
+
+import json
+import requests
+
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ..helper import format_prompt
+
+class NexraBing(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Bing"
+ url = "https://nexra.aryahcr.cc/documentation/bing/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements"
+ working = True
+ supports_stream = True
+
+ default_model = 'Balanced'
+ models = [default_model, 'Creative', 'Precise']
+
+ model_aliases = {
+ "gpt-4": "Balanced",
+ "gpt-4": "Creative",
+ "gpt-4": "Precise",
+ }
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ if model in cls.models:
+ return model
+ elif model in cls.model_aliases:
+ return cls.model_aliases[model]
+ else:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool = False,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "messages": [
+ {
+ "role": "user",
+ "content": format_prompt(messages)
+ }
+ ],
+ "conversation_style": model,
+ "markdown": markdown,
+ "stream": stream,
+ "model": "Bing"
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data, stream=True)
+
+ return cls.process_response(response)
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code != 200:
+ yield f"Error: {response.status_code}"
+ return
+
+ full_message = ""
+ for chunk in response.iter_content(chunk_size=None):
+ if chunk:
+ messages = chunk.decode('utf-8').split('\x1e')
+ for message in messages:
+ try:
+ json_data = json.loads(message)
+ if json_data.get('finish', False):
+ return
+ current_message = json_data.get('message', '')
+ if current_message:
+ new_content = current_message[len(full_message):]
+ if new_content:
+ yield new_content
+ full_message = current_message
+ except json.JSONDecodeError:
+ continue
+
+ if not full_message:
+ yield "No message received"
diff --git a/g4f/Provider/nexra/NexraBlackbox.py b/g4f/Provider/nexra/NexraBlackbox.py
new file mode 100644
index 00000000..be048fdd
--- /dev/null
+++ b/g4f/Provider/nexra/NexraBlackbox.py
@@ -0,0 +1,100 @@
+from __future__ import annotations
+
+import json
+import requests
+
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ..helper import format_prompt
+
+class NexraBlackbox(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Blackbox"
+ url = "https://nexra.aryahcr.cc/documentation/blackbox/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements"
+ working = True
+ supports_stream = True
+
+ default_model = "blackbox"
+ models = [default_model]
+ model_aliases = {"blackboxai": "blackbox",}
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ if model in cls.models:
+ return model
+ elif model in cls.model_aliases:
+ return cls.model_aliases[model]
+ else:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool,
+ proxy: str = None,
+ markdown: bool = False,
+ websearch: bool = False,
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "messages": [
+ {
+ "role": "user",
+ "content": format_prompt(messages)
+ }
+ ],
+ "websearch": websearch,
+ "stream": stream,
+ "markdown": markdown,
+ "model": model
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data, stream=stream)
+
+ if stream:
+ return cls.process_streaming_response(response)
+ else:
+ return cls.process_non_streaming_response(response)
+
+ @classmethod
+ def process_non_streaming_response(cls, response):
+ if response.status_code == 200:
+ try:
+ full_response = ""
+ for line in response.iter_lines(decode_unicode=True):
+ if line:
+ data = json.loads(line)
+ if data.get('finish'):
+ break
+ message = data.get('message', '')
+ if message:
+ full_response = message
+ return full_response
+ except json.JSONDecodeError:
+ return "Error: Unable to decode JSON response"
+ else:
+ return f"Error: {response.status_code}"
+
+ @classmethod
+ def process_streaming_response(cls, response):
+ previous_message = ""
+ for line in response.iter_lines(decode_unicode=True):
+ if line:
+ try:
+ data = json.loads(line)
+ if data.get('finish'):
+ break
+ message = data.get('message', '')
+ if message and message != previous_message:
+ yield message[len(previous_message):]
+ previous_message = message
+ except json.JSONDecodeError:
+ pass
diff --git a/g4f/Provider/nexra/NexraChatGPT.py b/g4f/Provider/nexra/NexraChatGPT.py
new file mode 100644
index 00000000..074a0363
--- /dev/null
+++ b/g4f/Provider/nexra/NexraChatGPT.py
@@ -0,0 +1,285 @@
+from __future__ import annotations
+
+import asyncio
+import json
+import requests
+from typing import Any, Dict
+
+from ...typing import AsyncResult, Messages
+from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
+from ..helper import format_prompt
+
+
+class NexraChatGPT(AsyncGeneratorProvider, ProviderModelMixin):
+ label = "Nexra ChatGPT"
+ url = "https://nexra.aryahcr.cc/documentation/chatgpt/en"
+ api_endpoint_nexra_chatgpt = "https://nexra.aryahcr.cc/api/chat/gpt"
+ api_endpoint_nexra_chatgpt4o = "https://nexra.aryahcr.cc/api/chat/complements"
+ api_endpoint_nexra_chatgpt_v2 = "https://nexra.aryahcr.cc/api/chat/complements"
+ api_endpoint_nexra_gptweb = "https://nexra.aryahcr.cc/api/chat/gptweb"
+ working = True
+ supports_system_message = True
+ supports_message_history = True
+ supports_stream = True
+
+ default_model = 'gpt-3.5-turbo'
+ nexra_chatgpt = [
+ 'gpt-4', 'gpt-4-0613', 'gpt-4-0314', 'gpt-4-32k-0314',
+ default_model, 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301',
+ 'text-davinci-003', 'text-davinci-002', 'code-davinci-002', 'gpt-3', 'text-curie-001', 'text-babbage-001', 'text-ada-001', 'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002'
+ ]
+ nexra_chatgpt4o = ['gpt-4o']
+ nexra_chatgptv2 = ['chatgpt']
+ nexra_gptweb = ['gptweb']
+ models = nexra_chatgpt + nexra_chatgpt4o + nexra_chatgptv2 + nexra_gptweb
+
+ model_aliases = {
+ "gpt-4": "gpt-4-0613",
+ "gpt-4-32k": "gpt-4-32k-0314",
+ "gpt-3.5-turbo": "gpt-3.5-turbo-16k",
+ "gpt-3.5-turbo-0613": "gpt-3.5-turbo-16k-0613",
+ "gpt-3": "text-davinci-003",
+ "text-davinci-002": "code-davinci-002",
+ "text-curie-001": "text-babbage-001",
+ "text-ada-001": "davinci",
+ "curie": "babbage",
+ "ada": "babbage-002",
+ "davinci-002": "davinci-002",
+ "chatgpt": "chatgpt",
+ "gptweb": "gptweb"
+ }
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ if model in cls.models:
+ return model
+ elif model in cls.model_aliases:
+ return cls.model_aliases[model]
+ else:
+ return cls.default_model
+
+ @classmethod
+ async def create_async_generator(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool = False,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ if model in cls.nexra_chatgpt:
+ async for chunk in cls._create_async_generator_nexra_chatgpt(model, messages, proxy, **kwargs):
+ yield chunk
+ elif model in cls.nexra_chatgpt4o:
+ async for chunk in cls._create_async_generator_nexra_chatgpt4o(model, messages, stream, proxy, markdown, **kwargs):
+ yield chunk
+ elif model in cls.nexra_chatgptv2:
+ async for chunk in cls._create_async_generator_nexra_chatgpt_v2(model, messages, stream, proxy, markdown, **kwargs):
+ yield chunk
+ elif model in cls.nexra_gptweb:
+ async for chunk in cls._create_async_generator_nexra_gptweb(model, messages, proxy, **kwargs):
+ yield chunk
+
+ @classmethod
+ async def _create_async_generator_nexra_chatgpt(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ model = cls.get_model(model)
+
+ headers = {
+ "Content-Type": "application/json"
+ }
+
+ prompt = format_prompt(messages)
+ data = {
+ "messages": messages,
+ "prompt": prompt,
+ "model": model,
+ "markdown": markdown
+ }
+
+ loop = asyncio.get_event_loop()
+ try:
+ response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt, data, headers, proxy)
+ filtered_response = cls._filter_response(response)
+
+ for chunk in filtered_response:
+ yield chunk
+ except Exception as e:
+ print(f"Error during API request (nexra_chatgpt): {e}")
+
+ @classmethod
+ async def _create_async_generator_nexra_chatgpt4o(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool = False,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ model = cls.get_model(model)
+
+ headers = {
+ "Content-Type": "application/json"
+ }
+
+ prompt = format_prompt(messages)
+ data = {
+ "messages": [
+ {
+ "role": "user",
+ "content": prompt
+ }
+ ],
+ "stream": stream,
+ "markdown": markdown,
+ "model": model
+ }
+
+ loop = asyncio.get_event_loop()
+ try:
+ response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt4o, data, headers, proxy, stream)
+
+ if stream:
+ async for chunk in cls._process_streaming_response(response):
+ yield chunk
+ else:
+ for chunk in cls._process_non_streaming_response(response):
+ yield chunk
+ except Exception as e:
+ print(f"Error during API request (nexra_chatgpt4o): {e}")
+
+ @classmethod
+ async def _create_async_generator_nexra_chatgpt_v2(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool = False,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ model = cls.get_model(model)
+
+ headers = {
+ "Content-Type": "application/json"
+ }
+
+ prompt = format_prompt(messages)
+ data = {
+ "messages": [
+ {
+ "role": "user",
+ "content": prompt
+ }
+ ],
+ "stream": stream,
+ "markdown": markdown,
+ "model": model
+ }
+
+ loop = asyncio.get_event_loop()
+ try:
+ response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt_v2, data, headers, proxy, stream)
+
+ if stream:
+ async for chunk in cls._process_streaming_response(response):
+ yield chunk
+ else:
+ for chunk in cls._process_non_streaming_response(response):
+ yield chunk
+ except Exception as e:
+ print(f"Error during API request (nexra_chatgpt_v2): {e}")
+
+ @classmethod
+ async def _create_async_generator_nexra_gptweb(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ model = cls.get_model(model)
+
+ headers = {
+ "Content-Type": "application/json"
+ }
+
+ prompt = format_prompt(messages)
+ data = {
+ "prompt": prompt,
+ "markdown": markdown,
+ }
+
+ loop = asyncio.get_event_loop()
+ try:
+ response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_gptweb, data, headers, proxy)
+
+ for chunk in response.iter_content(1024):
+ if chunk:
+ decoded_chunk = chunk.decode().lstrip('_')
+ try:
+ response_json = json.loads(decoded_chunk)
+ if response_json.get("status"):
+ yield response_json.get("gpt", "")
+ except json.JSONDecodeError:
+ continue
+ except Exception as e:
+ print(f"Error during API request (nexra_gptweb): {e}")
+
+ @staticmethod
+ def _sync_post_request(url: str, data: Dict[str, Any], headers: Dict[str, str], proxy: str = None, stream: bool = False) -> requests.Response:
+ proxies = {
+ "http": proxy,
+ "https": proxy,
+ } if proxy else None
+
+ try:
+ response = requests.post(url, json=data, headers=headers, proxies=proxies, stream=stream)
+ response.raise_for_status()
+ return response
+ except requests.RequestException as e:
+ print(f"Request failed: {e}")
+ raise
+
+ @staticmethod
+ def _process_non_streaming_response(response: requests.Response) -> str:
+ if response.status_code == 200:
+ try:
+ content = response.text.lstrip('')
+ data = json.loads(content)
+ return data.get('message', '')
+ except json.JSONDecodeError:
+ return "Error: Unable to decode JSON response"
+ else:
+ return f"Error: {response.status_code}"
+
+ @staticmethod
+ async def _process_streaming_response(response: requests.Response):
+ full_message = ""
+ for line in response.iter_lines(decode_unicode=True):
+ if line:
+ try:
+ line = line.lstrip('')
+ data = json.loads(line)
+ if data.get('finish'):
+ break
+ message = data.get('message', '')
+ if message:
+ yield message[len(full_message):]
+ full_message = message
+ except json.JSONDecodeError:
+ pass
+
+ @staticmethod
+ def _filter_response(response: requests.Response) -> str:
+ response_json = response.json()
+ return response_json.get("gpt", "")
diff --git a/g4f/Provider/nexra/NexraDallE.py b/g4f/Provider/nexra/NexraDallE.py
new file mode 100644
index 00000000..f605c6d0
--- /dev/null
+++ b/g4f/Provider/nexra/NexraDallE.py
@@ -0,0 +1,63 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraDallE(AbstractProvider, ProviderModelMixin):
+ label = "Nexra DALL-E"
+ url = "https://nexra.aryahcr.cc/documentation/dall-e/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = "dalle"
+ models = [default_model]
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": model,
+ "response": response
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_')
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/NexraDallE2.py b/g4f/Provider/nexra/NexraDallE2.py
new file mode 100644
index 00000000..2a36b6e6
--- /dev/null
+++ b/g4f/Provider/nexra/NexraDallE2.py
@@ -0,0 +1,63 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraDallE2(AbstractProvider, ProviderModelMixin):
+ label = "Nexra DALL-E 2"
+ url = "https://nexra.aryahcr.cc/documentation/dall-e/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = "dalle2"
+ models = [default_model]
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": model,
+ "response": response
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_')
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/NexraEmi.py b/g4f/Provider/nexra/NexraEmi.py
new file mode 100644
index 00000000..c26becec
--- /dev/null
+++ b/g4f/Provider/nexra/NexraEmi.py
@@ -0,0 +1,63 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraEmi(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Emi"
+ url = "https://nexra.aryahcr.cc/documentation/emi/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = "emi"
+ models = [default_model]
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": model,
+ "response": response
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_')
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/NexraFluxPro.py b/g4f/Provider/nexra/NexraFluxPro.py
new file mode 100644
index 00000000..cfb26385
--- /dev/null
+++ b/g4f/Provider/nexra/NexraFluxPro.py
@@ -0,0 +1,70 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraFluxPro(AbstractProvider, ProviderModelMixin):
+ url = "https://nexra.aryahcr.cc/documentation/flux-pro/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = 'flux'
+ models = [default_model]
+ model_aliases = {
+ "flux-pro": "flux",
+ }
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ if model in cls.models:
+ return model
+ elif model in cls.model_aliases:
+ return cls.model_aliases[model]
+ else:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": model,
+ "response": response
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_')
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/NexraGeminiPro.py b/g4f/Provider/nexra/NexraGeminiPro.py
new file mode 100644
index 00000000..e4e6a8ec
--- /dev/null
+++ b/g4f/Provider/nexra/NexraGeminiPro.py
@@ -0,0 +1,86 @@
+from __future__ import annotations
+
+import json
+import requests
+
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ..helper import format_prompt
+
+class NexraGeminiPro(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Gemini PRO"
+ url = "https://nexra.aryahcr.cc/documentation/gemini-pro/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements"
+ working = True
+ supports_stream = True
+
+ default_model = 'gemini-pro'
+ models = [default_model]
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "messages": [
+ {
+ "role": "user",
+ "content": format_prompt(messages)
+ }
+ ],
+ "stream": stream,
+ "markdown": markdown,
+ "model": model
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data, stream=stream)
+
+ if stream:
+ return cls.process_streaming_response(response)
+ else:
+ return cls.process_non_streaming_response(response)
+
+ @classmethod
+ def process_non_streaming_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.lstrip('')
+ data = json.loads(content)
+ return data.get('message', '')
+ except json.JSONDecodeError:
+ return "Error: Unable to decode JSON response"
+ else:
+ return f"Error: {response.status_code}"
+
+ @classmethod
+ def process_streaming_response(cls, response):
+ full_message = ""
+ for line in response.iter_lines(decode_unicode=True):
+ if line:
+ try:
+ line = line.lstrip('')
+ data = json.loads(line)
+ if data.get('finish'):
+ break
+ message = data.get('message', '')
+ if message:
+ yield message[len(full_message):]
+ full_message = message
+ except json.JSONDecodeError:
+ pass
diff --git a/g4f/Provider/nexra/NexraMidjourney.py b/g4f/Provider/nexra/NexraMidjourney.py
new file mode 100644
index 00000000..c427f8a0
--- /dev/null
+++ b/g4f/Provider/nexra/NexraMidjourney.py
@@ -0,0 +1,63 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraMidjourney(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Midjourney"
+ url = "https://nexra.aryahcr.cc/documentation/midjourney/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = "midjourney"
+ models = [default_model]
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": model,
+ "response": response
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_')
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/NexraProdiaAI.py b/g4f/Provider/nexra/NexraProdiaAI.py
new file mode 100644
index 00000000..de997fce
--- /dev/null
+++ b/g4f/Provider/nexra/NexraProdiaAI.py
@@ -0,0 +1,151 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraProdiaAI(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Prodia AI"
+ url = "https://nexra.aryahcr.cc/documentation/prodia/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = 'absolutereality_v181.safetensors [3d9d4d2b]'
+ models = [
+ '3Guofeng3_v34.safetensors [50f420de]',
+ 'absolutereality_V16.safetensors [37db0fc3]',
+ default_model,
+ 'amIReal_V41.safetensors [0a8a2e61]',
+ 'analog-diffusion-1.0.ckpt [9ca13f02]',
+ 'aniverse_v30.safetensors [579e6f85]',
+ 'anythingv3_0-pruned.ckpt [2700c435]',
+ 'anything-v4.5-pruned.ckpt [65745d25]',
+ 'anythingV5_PrtRE.safetensors [893e49b9]',
+ 'AOM3A3_orangemixs.safetensors [9600da17]',
+ 'blazing_drive_v10g.safetensors [ca1c1eab]',
+ 'breakdomain_I2428.safetensors [43cc7d2f]',
+ 'breakdomain_M2150.safetensors [15f7afca]',
+ 'cetusMix_Version35.safetensors [de2f2560]',
+ 'childrensStories_v13D.safetensors [9dfaabcb]',
+ 'childrensStories_v1SemiReal.safetensors [a1c56dbb]',
+ 'childrensStories_v1ToonAnime.safetensors [2ec7b88b]',
+ 'Counterfeit_v30.safetensors [9e2a8f19]',
+ 'cuteyukimixAdorable_midchapter3.safetensors [04bdffe6]',
+ 'cyberrealistic_v33.safetensors [82b0d085]',
+ 'dalcefo_v4.safetensors [425952fe]',
+ 'deliberate_v2.safetensors [10ec4b29]',
+ 'deliberate_v3.safetensors [afd9d2d4]',
+ 'dreamlike-anime-1.0.safetensors [4520e090]',
+ 'dreamlike-diffusion-1.0.safetensors [5c9fd6e0]',
+ 'dreamlike-photoreal-2.0.safetensors [fdcf65e7]',
+ 'dreamshaper_6BakedVae.safetensors [114c8abb]',
+ 'dreamshaper_7.safetensors [5cf5ae06]',
+ 'dreamshaper_8.safetensors [9d40847d]',
+ 'edgeOfRealism_eorV20.safetensors [3ed5de15]',
+ 'EimisAnimeDiffusion_V1.ckpt [4f828a15]',
+ 'elldreths-vivid-mix.safetensors [342d9d26]',
+ 'epicphotogasm_xPlusPlus.safetensors [1a8f6d35]',
+ 'epicrealism_naturalSinRC1VAE.safetensors [90a4c676]',
+ 'epicrealism_pureEvolutionV3.safetensors [42c8440c]',
+ 'ICantBelieveItsNotPhotography_seco.safetensors [4e7a3dfd]',
+ 'indigoFurryMix_v75Hybrid.safetensors [91208cbb]',
+ 'juggernaut_aftermath.safetensors [5e20c455]',
+ 'lofi_v4.safetensors [ccc204d6]',
+ 'lyriel_v16.safetensors [68fceea2]',
+ 'majicmixRealistic_v4.safetensors [29d0de58]',
+ 'mechamix_v10.safetensors [ee685731]',
+ 'meinamix_meinaV9.safetensors [2ec66ab0]',
+ 'meinamix_meinaV11.safetensors [b56ce717]',
+ 'neverendingDream_v122.safetensors [f964ceeb]',
+ 'openjourney_V4.ckpt [ca2f377f]',
+ 'pastelMixStylizedAnime_pruned_fp16.safetensors [793a26e8]',
+ 'portraitplus_V1.0.safetensors [1400e684]',
+ 'protogenx34.safetensors [5896f8d5]',
+ 'Realistic_Vision_V1.4-pruned-fp16.safetensors [8d21810b]',
+ 'Realistic_Vision_V2.0.safetensors [79587710]',
+ 'Realistic_Vision_V4.0.safetensors [29a7afaa]',
+ 'Realistic_Vision_V5.0.safetensors [614d1063]',
+ 'Realistic_Vision_V5.1.safetensors [a0f13c83]',
+ 'redshift_diffusion-V10.safetensors [1400e684]',
+ 'revAnimated_v122.safetensors [3f4fefd9]',
+ 'rundiffusionFX25D_v10.safetensors [cd12b0ee]',
+ 'rundiffusionFX_v10.safetensors [cd4e694d]',
+ 'sdv1_4.ckpt [7460a6fa]',
+ 'v1-5-pruned-emaonly.safetensors [d7049739]',
+ 'v1-5-inpainting.safetensors [21c7ab71]',
+ 'shoninsBeautiful_v10.safetensors [25d8c546]',
+ 'theallys-mix-ii-churned.safetensors [5d9225a4]',
+ 'timeless-1.0.ckpt [7c4971d4]',
+ 'toonyou_beta6.safetensors [980f6b15]',
+ ]
+
+ model_aliases = {}
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ if model in cls.models:
+ return model
+ elif model in cls.model_aliases:
+ return cls.model_aliases[model]
+ else:
+ return cls.default_model
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ steps: str = 25, # Min: 1, Max: 30
+ cfg_scale: str = 7, # Min: 0, Max: 20
+ sampler: str = "DPM++ 2M Karras", # Select from these: "Euler","Euler a","Heun","DPM++ 2M Karras","DPM++ SDE Karras","DDIM"
+ negative_prompt: str = "", # Indicates what the AI should not do
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": "prodia",
+ "response": response,
+ "data": {
+ "model": model,
+ "steps": steps,
+ "cfg_scale": cfg_scale,
+ "sampler": sampler,
+ "negative_prompt": negative_prompt
+ }
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_') # Remove leading underscores
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/NexraQwen.py b/g4f/Provider/nexra/NexraQwen.py
new file mode 100644
index 00000000..7f944e44
--- /dev/null
+++ b/g4f/Provider/nexra/NexraQwen.py
@@ -0,0 +1,86 @@
+from __future__ import annotations
+
+import json
+import requests
+
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ..helper import format_prompt
+
+class NexraQwen(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Qwen"
+ url = "https://nexra.aryahcr.cc/documentation/qwen/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements"
+ working = True
+ supports_stream = True
+
+ default_model = 'qwen'
+ models = [default_model]
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "messages": [
+ {
+ "role": "user",
+ "content": format_prompt(messages)
+ }
+ ],
+ "stream": stream,
+ "markdown": markdown,
+ "model": model
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data, stream=stream)
+
+ if stream:
+ return cls.process_streaming_response(response)
+ else:
+ return cls.process_non_streaming_response(response)
+
+ @classmethod
+ def process_non_streaming_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.lstrip('')
+ data = json.loads(content)
+ return data.get('message', '')
+ except json.JSONDecodeError:
+ return "Error: Unable to decode JSON response"
+ else:
+ return f"Error: {response.status_code}"
+
+ @classmethod
+ def process_streaming_response(cls, response):
+ full_message = ""
+ for line in response.iter_lines(decode_unicode=True):
+ if line:
+ try:
+ line = line.lstrip('')
+ data = json.loads(line)
+ if data.get('finish'):
+ break
+ message = data.get('message', '')
+ if message is not None and message != full_message:
+ yield message[len(full_message):]
+ full_message = message
+ except json.JSONDecodeError:
+ pass
diff --git a/g4f/Provider/nexra/NexraSD15.py b/g4f/Provider/nexra/NexraSD15.py
new file mode 100644
index 00000000..860a132f
--- /dev/null
+++ b/g4f/Provider/nexra/NexraSD15.py
@@ -0,0 +1,72 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraSD15(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Stable Diffusion 1.5"
+ url = "https://nexra.aryahcr.cc/documentation/stable-diffusion/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = 'stablediffusion-1.5'
+ models = [default_model]
+
+ model_aliases = {
+ "sd-1.5": "stablediffusion-1.5",
+ }
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ if model in cls.models:
+ return model
+ elif model in cls.model_aliases:
+ return cls.model_aliases[model]
+ else:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": model,
+ "response": response
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_')
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/NexraSDLora.py b/g4f/Provider/nexra/NexraSDLora.py
new file mode 100644
index 00000000..a12bff1a
--- /dev/null
+++ b/g4f/Provider/nexra/NexraSDLora.py
@@ -0,0 +1,69 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraSDLora(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Stable Diffusion Lora"
+ url = "https://nexra.aryahcr.cc/documentation/stable-diffusion/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = "sdxl-lora"
+ models = [default_model]
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ guidance: str = 0.3, # Min: 0, Max: 5
+ steps: str = 2, # Min: 2, Max: 10
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": model,
+ "response": response,
+ "data": {
+ "guidance": guidance,
+ "steps": steps
+ }
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_')
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/NexraSDTurbo.py b/g4f/Provider/nexra/NexraSDTurbo.py
new file mode 100644
index 00000000..865b4522
--- /dev/null
+++ b/g4f/Provider/nexra/NexraSDTurbo.py
@@ -0,0 +1,69 @@
+from __future__ import annotations
+
+import json
+import requests
+from ...typing import CreateResult, Messages
+from ..base_provider import ProviderModelMixin, AbstractProvider
+from ...image import ImageResponse
+
+class NexraSDTurbo(AbstractProvider, ProviderModelMixin):
+ label = "Nexra Stable Diffusion Turbo"
+ url = "https://nexra.aryahcr.cc/documentation/stable-diffusion/en"
+ api_endpoint = "https://nexra.aryahcr.cc/api/image/complements"
+ working = True
+
+ default_model = "sdxl-turbo"
+ models = [default_model]
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ return cls.default_model
+
+ @classmethod
+ def create_completion(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ response: str = "url", # base64 or url
+ strength: str = 0.7, # Min: 0, Max: 1
+ steps: str = 2, # Min: 1, Max: 10
+ **kwargs
+ ) -> CreateResult:
+ model = cls.get_model(model)
+
+ headers = {
+ 'Content-Type': 'application/json'
+ }
+
+ data = {
+ "prompt": messages[-1]["content"],
+ "model": model,
+ "response": response,
+ "data": {
+ "strength": strength,
+ "steps": steps
+ }
+ }
+
+ response = requests.post(cls.api_endpoint, headers=headers, json=data)
+
+ result = cls.process_response(response)
+ yield result
+
+ @classmethod
+ def process_response(cls, response):
+ if response.status_code == 200:
+ try:
+ content = response.text.strip()
+ content = content.lstrip('_') # Remove the leading underscore
+ data = json.loads(content)
+ if data.get('status') and data.get('images'):
+ image_url = data['images'][0]
+ return ImageResponse(images=[image_url], alt="Generated Image")
+ else:
+ return "Error: No image URL found in the response"
+ except json.JSONDecodeError as e:
+ return f"Error: Unable to decode JSON response. Details: {str(e)}"
+ else:
+ return f"Error: {response.status_code}, Response: {response.text}"
diff --git a/g4f/Provider/nexra/__init__.py b/g4f/Provider/nexra/__init__.py
new file mode 100644
index 00000000..bebc1fb6
--- /dev/null
+++ b/g4f/Provider/nexra/__init__.py
@@ -0,0 +1,14 @@
+from .NexraBing import NexraBing
+from .NexraBlackbox import NexraBlackbox
+from .NexraChatGPT import NexraChatGPT
+from .NexraDallE import NexraDallE
+from .NexraDallE2 import NexraDallE2
+from .NexraEmi import NexraEmi
+from .NexraFluxPro import NexraFluxPro
+from .NexraGeminiPro import NexraGeminiPro
+from .NexraMidjourney import NexraMidjourney
+from .NexraProdiaAI import NexraProdiaAI
+from .NexraQwen import NexraQwen
+from .NexraSD15 import NexraSD15
+from .NexraSDLora import NexraSDLora
+from .NexraSDTurbo import NexraSDTurbo