summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--README.md41
-rw-r--r--etc/interference/app.py163
-rw-r--r--etc/interference/requirements.txt5
-rw-r--r--g4f/api/__init__.py162
-rw-r--r--g4f/api/run.py4
-rw-r--r--g4f/cli.py28
-rw-r--r--g4f/gui/__init__.py2
-rw-r--r--g4f/gui/run.py30
-rw-r--r--g4f/interference/__init__.py94
-rw-r--r--g4f/interference/run.py4
-rw-r--r--requirements.txt4
-rw-r--r--setup.py15
12 files changed, 253 insertions, 299 deletions
diff --git a/README.md b/README.md
index 90643b5a..59c743b5 100644
--- a/README.md
+++ b/README.md
@@ -7,18 +7,39 @@ By using this repository or any code related to it, you agree to the [legal noti
pip install -U g4f
```
+or if you just want to use the gui or interference api, install with [pipx](https://pypa.github.io/pipx/)
+
+```sh
+pipx install g4f
+```
+
## New features
- Telegram Channel: https://t.me/g4f_channel
- g4f GUI is back !!:
Install g4f with pip and then run:
-```py
+
+```sh
+g4f gui
+```
+
+or
+
+```sh
python -m g4f.gui.run
```
+
preview:
<img width="1470" alt="image" src="https://github.com/xtekky/gpt4free/assets/98614666/57ad818a-a0dd-4eae-83e1-3fff848ae040">
-- run interference from pypi package:
+- run interference api from pypi package:
+
+```sh
+g4f api
+```
+
+or
+
```py
python -m g4f.interference.run
```
@@ -320,26 +341,26 @@ print(f"Result:", response)
### interference openai-proxy api (use with openai python package)
-#### run interference from pypi package:
+#### run interference api from pypi package:
```py
-from g4f.interference import run_interference
+from g4f.api import run_api
-run_interference()
+run_api()
```
-#### run interference from repo:
+#### run interference api from repo:
If you want to use the embedding function, you need to get a huggingface token. You can get one at https://huggingface.co/settings/tokens make sure your role is set to write. If you have your token, just use it instead of the OpenAI api-key.
-get requirements:
+run server:
```sh
-pip install -r etc/interference/requirements.txt
+g4f api
```
-run server:
+or
```sh
-python3 -m etc/interference.app
+python -m g4f.api
```
```py
diff --git a/etc/interference/app.py b/etc/interference/app.py
deleted file mode 100644
index 5abbcff2..00000000
--- a/etc/interference/app.py
+++ /dev/null
@@ -1,163 +0,0 @@
-import json
-import time
-import random
-import string
-import requests
-
-from typing import Any
-from flask import Flask, request
-from flask_cors import CORS
-from transformers import AutoTokenizer
-from g4f import ChatCompletion
-
-app = Flask(__name__)
-CORS(app)
-
-@app.route('/chat/completions', methods=['POST'])
-def chat_completions():
- model = request.get_json().get('model', 'gpt-3.5-turbo')
- stream = request.get_json().get('stream', False)
- messages = request.get_json().get('messages')
-
- response = ChatCompletion.create(model = model,
- stream = stream, messages = messages)
-
- completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28))
- completion_timestamp = int(time.time())
-
- if not stream:
- return {
- 'id': f'chatcmpl-{completion_id}',
- 'object': 'chat.completion',
- 'created': completion_timestamp,
- 'model': model,
- 'choices': [
- {
- 'index': 0,
- 'message': {
- 'role': 'assistant',
- 'content': response,
- },
- 'finish_reason': 'stop',
- }
- ],
- 'usage': {
- 'prompt_tokens': None,
- 'completion_tokens': None,
- 'total_tokens': None,
- },
- }
-
- def streaming():
- for chunk in response:
- completion_data = {
- 'id': f'chatcmpl-{completion_id}',
- 'object': 'chat.completion.chunk',
- 'created': completion_timestamp,
- 'model': model,
- 'choices': [
- {
- 'index': 0,
- 'delta': {
- 'content': chunk,
- },
- 'finish_reason': None,
- }
- ],
- }
-
- content = json.dumps(completion_data, separators=(',', ':'))
- yield f'data: {content}\n\n'
- time.sleep(0.1)
-
- end_completion_data: dict[str, Any] = {
- 'id': f'chatcmpl-{completion_id}',
- 'object': 'chat.completion.chunk',
- 'created': completion_timestamp,
- 'model': model,
- 'choices': [
- {
- 'index': 0,
- 'delta': {},
- 'finish_reason': 'stop',
- }
- ],
- }
- content = json.dumps(end_completion_data, separators=(',', ':'))
- yield f'data: {content}\n\n'
-
- return app.response_class(streaming(), mimetype='text/event-stream')
-
-
-# Get the embedding from huggingface
-def get_embedding(input_text, token):
- huggingface_token = token
- embedding_model = 'sentence-transformers/all-mpnet-base-v2'
- max_token_length = 500
-
- # Load the tokenizer for the 'all-mpnet-base-v2' model
- tokenizer = AutoTokenizer.from_pretrained(embedding_model)
- # Tokenize the text and split the tokens into chunks of 500 tokens each
- tokens = tokenizer.tokenize(input_text)
- token_chunks = [tokens[i:i + max_token_length]
- for i in range(0, len(tokens), max_token_length)]
-
- # Initialize an empty list
- embeddings = []
-
- # Create embeddings for each chunk
- for chunk in token_chunks:
- # Convert the chunk tokens back to text
- chunk_text = tokenizer.convert_tokens_to_string(chunk)
-
- # Use the Hugging Face API to get embeddings for the chunk
- api_url = f'https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}'
- headers = {'Authorization': f'Bearer {huggingface_token}'}
- chunk_text = chunk_text.replace('\n', ' ')
-
- # Make a POST request to get the chunk's embedding
- response = requests.post(api_url, headers=headers, json={
- 'inputs': chunk_text, 'options': {'wait_for_model': True}})
-
- # Parse the response and extract the embedding
- chunk_embedding = response.json()
- # Append the embedding to the list
- embeddings.append(chunk_embedding)
-
- # averaging all the embeddings
- # this isn't very effective
- # someone a better idea?
- num_embeddings = len(embeddings)
- average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)]
- embedding = average_embedding
- return embedding
-
-
-@app.route('/embeddings', methods=['POST'])
-def embeddings():
- input_text_list = request.get_json().get('input')
- input_text = ' '.join(map(str, input_text_list))
- token = request.headers.get('Authorization').replace('Bearer ', '')
- embedding = get_embedding(input_text, token)
-
- return {
- 'data': [
- {
- 'embedding': embedding,
- 'index': 0,
- 'object': 'embedding'
- }
- ],
- 'model': 'text-embedding-ada-002',
- 'object': 'list',
- 'usage': {
- 'prompt_tokens': None,
- 'total_tokens': None
- }
- }
-
-def main():
- app.run(host='0.0.0.0', port=1337, debug=True)
-
-if __name__ == '__main__':
- main() \ No newline at end of file
diff --git a/etc/interference/requirements.txt b/etc/interference/requirements.txt
deleted file mode 100644
index eaa3265b..00000000
--- a/etc/interference/requirements.txt
+++ /dev/null
@@ -1,5 +0,0 @@
-flask_cors
-watchdog~=3.0.0
-transformers
-tensorflow
-torch \ No newline at end of file
diff --git a/g4f/api/__init__.py b/g4f/api/__init__.py
new file mode 100644
index 00000000..c52085dc
--- /dev/null
+++ b/g4f/api/__init__.py
@@ -0,0 +1,162 @@
+import json
+import random
+import string
+import time
+
+import requests
+from flask import Flask, request
+from flask_cors import CORS
+from transformers import AutoTokenizer
+
+from g4f import ChatCompletion
+
+app = Flask(__name__)
+CORS(app)
+
+
+@app.route("/")
+def index():
+ return "interference api, url: http://127.0.0.1:1337"
+
+
+@app.route("/chat/completions", methods=["POST"])
+def chat_completions():
+ model = request.get_json().get("model", "gpt-3.5-turbo")
+ stream = request.get_json().get("stream", False)
+ messages = request.get_json().get("messages")
+
+ response = ChatCompletion.create(model=model, stream=stream, messages=messages)
+
+ completion_id = "".join(random.choices(string.ascii_letters + string.digits, k=28))
+ completion_timestamp = int(time.time())
+
+ if not stream:
+ return {
+ "id": f"chatcmpl-{completion_id}",
+ "object": "chat.completion",
+ "created": completion_timestamp,
+ "model": model,
+ "choices": [
+ {
+ "index": 0,
+ "message": {
+ "role": "assistant",
+ "content": response,
+ },
+ "finish_reason": "stop",
+ }
+ ],
+ "usage": {
+ "prompt_tokens": None,
+ "completion_tokens": None,
+ "total_tokens": None,
+ },
+ }
+
+ def streaming():
+ for chunk in response:
+ completion_data = {
+ "id": f"chatcmpl-{completion_id}",
+ "object": "chat.completion.chunk",
+ "created": completion_timestamp,
+ "model": model,
+ "choices": [
+ {
+ "index": 0,
+ "delta": {
+ "content": chunk,
+ },
+ "finish_reason": None,
+ }
+ ],
+ }
+
+ content = json.dumps(completion_data, separators=(",", ":"))
+ yield f"data: {content}\n\n"
+ time.sleep(0.1)
+
+ end_completion_data = {
+ "id": f"chatcmpl-{completion_id}",
+ "object": "chat.completion.chunk",
+ "created": completion_timestamp,
+ "model": model,
+ "choices": [
+ {
+ "index": 0,
+ "delta": {},
+ "finish_reason": "stop",
+ }
+ ],
+ }
+ content = json.dumps(end_completion_data, separators=(",", ":"))
+ yield f"data: {content}\n\n"
+
+ return app.response_class(streaming(), mimetype="text/event-stream")
+
+
+# Get the embedding from huggingface
+def get_embedding(input_text, token):
+ huggingface_token = token
+ embedding_model = "sentence-transformers/all-mpnet-base-v2"
+ max_token_length = 500
+
+ # Load the tokenizer for the 'all-mpnet-base-v2' model
+ tokenizer = AutoTokenizer.from_pretrained(embedding_model)
+ # Tokenize the text and split the tokens into chunks of 500 tokens each
+ tokens = tokenizer.tokenize(input_text)
+ token_chunks = [
+ tokens[i : i + max_token_length]
+ for i in range(0, len(tokens), max_token_length)
+ ]
+
+ # Initialize an empty list
+ embeddings = []
+
+ # Create embeddings for each chunk
+ for chunk in token_chunks:
+ # Convert the chunk tokens back to text
+ chunk_text = tokenizer.convert_tokens_to_string(chunk)
+
+ # Use the Hugging Face API to get embeddings for the chunk
+ api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}"
+ headers = {"Authorization": f"Bearer {huggingface_token}"}
+ chunk_text = chunk_text.replace("\n", " ")
+
+ # Make a POST request to get the chunk's embedding
+ response = requests.post(
+ api_url,
+ headers=headers,
+ json={"inputs": chunk_text, "options": {"wait_for_model": True}},
+ )
+
+ # Parse the response and extract the embedding
+ chunk_embedding = response.json()
+ # Append the embedding to the list
+ embeddings.append(chunk_embedding)
+
+ # averaging all the embeddings
+ # this isn't very effective
+ # someone a better idea?
+ num_embeddings = len(embeddings)
+ average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)]
+ embedding = average_embedding
+ return embedding
+
+
+@app.route("/embeddings", methods=["POST"])
+def embeddings():
+ input_text_list = request.get_json().get("input")
+ input_text = " ".join(map(str, input_text_list))
+ token = request.headers.get("Authorization").replace("Bearer ", "")
+ embedding = get_embedding(input_text, token)
+
+ return {
+ "data": [{"embedding": embedding, "index": 0, "object": "embedding"}],
+ "model": "text-embedding-ada-002",
+ "object": "list",
+ "usage": {"prompt_tokens": None, "total_tokens": None},
+ }
+
+
+def run_api():
+ app.run(host="0.0.0.0", port=1337)
diff --git a/g4f/api/run.py b/g4f/api/run.py
new file mode 100644
index 00000000..6e9b63f3
--- /dev/null
+++ b/g4f/api/run.py
@@ -0,0 +1,4 @@
+from g4f.api import run_api
+
+if __name__ == "__main__":
+ run_api()
diff --git a/g4f/cli.py b/g4f/cli.py
new file mode 100644
index 00000000..42401cc8
--- /dev/null
+++ b/g4f/cli.py
@@ -0,0 +1,28 @@
+import argparse
+
+from g4f.api import run_api
+from g4f.gui.run import gui_parser, run_gui_args
+
+
+def run_gui(args):
+ print("Running GUI...")
+
+
+def main():
+ parser = argparse.ArgumentParser(description="Run gpt4free")
+ subparsers = parser.add_subparsers(dest="mode", help="Mode to run the g4f in.")
+ subparsers.add_parser("api")
+ subparsers.add_parser("gui", parents=[gui_parser()], add_help=False)
+
+ args = parser.parse_args()
+ if args.mode == "api":
+ run_api()
+ elif args.mode == "gui":
+ run_gui_args(args)
+ else:
+ parser.print_help()
+ exit(1)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/g4f/gui/__init__.py b/g4f/gui/__init__.py
index 48b78881..a8000e71 100644
--- a/g4f/gui/__init__.py
+++ b/g4f/gui/__init__.py
@@ -27,4 +27,4 @@ def run_gui(host: str = '0.0.0.0', port: int = 80, debug: bool = False) -> None:
print(f"Running on port {config['port']}")
app.run(**config)
- print(f"Closing port {config['port']}") \ No newline at end of file
+ print(f"Closing port {config['port']}")
diff --git a/g4f/gui/run.py b/g4f/gui/run.py
index 731c7cbf..0f94814c 100644
--- a/g4f/gui/run.py
+++ b/g4f/gui/run.py
@@ -1,18 +1,24 @@
-from g4f.gui import run_gui
from argparse import ArgumentParser
+from g4f.gui import run_gui
-if __name__ == '__main__':
-
- parser = ArgumentParser(description='Run the GUI')
-
- parser.add_argument('-host', type=str, default='0.0.0.0', help='hostname')
- parser.add_argument('-port', type=int, default=80, help='port')
- parser.add_argument('-debug', action='store_true', help='debug mode')
- args = parser.parse_args()
- port = args.port
+def gui_parser():
+ parser = ArgumentParser(description="Run the GUI")
+ parser.add_argument("-host", type=str, default="0.0.0.0", help="hostname")
+ parser.add_argument("-port", type=int, default=80, help="port")
+ parser.add_argument("-debug", action="store_true", help="debug mode")
+ return parser
+
+
+def run_gui_args(args):
host = args.host
+ port = args.port
debug = args.debug
-
- run_gui(host, port, debug) \ No newline at end of file
+ run_gui(host, port, debug)
+
+
+if __name__ == "__main__":
+ parser = gui_parser()
+ args = parser.parse_args()
+ run_gui_args(args)
diff --git a/g4f/interference/__init__.py b/g4f/interference/__init__.py
deleted file mode 100644
index d756faa7..00000000
--- a/g4f/interference/__init__.py
+++ /dev/null
@@ -1,94 +0,0 @@
-import json
-import time
-import random
-import string
-
-from typing import Any
-from flask import Flask, request
-from flask_cors import CORS
-from g4f import ChatCompletion
-
-app = Flask(__name__)
-CORS(app)
-
-@app.route('/')
-def index():
- return 'interference api, url: http://127.0.0.1:1337'
-
-@app.route('/chat/completions', methods=['POST'])
-def chat_completions():
- model = request.get_json().get('model', 'gpt-3.5-turbo')
- stream = request.get_json().get('stream', False)
- messages = request.get_json().get('messages')
-
- response = ChatCompletion.create(model = model,
- stream = stream, messages = messages)
-
- completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28))
- completion_timestamp = int(time.time())
-
- if not stream:
- return {
- 'id': f'chatcmpl-{completion_id}',
- 'object': 'chat.completion',
- 'created': completion_timestamp,
- 'model': model,
- 'choices': [
- {
- 'index': 0,
- 'message': {
- 'role': 'assistant',
- 'content': response,
- },
- 'finish_reason': 'stop',
- }
- ],
- 'usage': {
- 'prompt_tokens': None,
- 'completion_tokens': None,
- 'total_tokens': None,
- },
- }
-
- def streaming():
- for chunk in response:
- completion_data = {
- 'id': f'chatcmpl-{completion_id}',
- 'object': 'chat.completion.chunk',
- 'created': completion_timestamp,
- 'model': model,
- 'choices': [
- {
- 'index': 0,
- 'delta': {
- 'content': chunk,
- },
- 'finish_reason': None,
- }
- ],
- }
-
- content = json.dumps(completion_data, separators=(',', ':'))
- yield f'data: {content}\n\n'
- time.sleep(0.1)
-
- end_completion_data: dict[str, Any] = {
- 'id': f'chatcmpl-{completion_id}',
- 'object': 'chat.completion.chunk',
- 'created': completion_timestamp,
- 'model': model,
- 'choices': [
- {
- 'index': 0,
- 'delta': {},
- 'finish_reason': 'stop',
- }
- ],
- }
- content = json.dumps(end_completion_data, separators=(',', ':'))
- yield f'data: {content}\n\n'
-
- return app.response_class(streaming(), mimetype='text/event-stream')
-
-def run_interference():
- app.run(host='0.0.0.0', port=1337, debug=True) \ No newline at end of file
diff --git a/g4f/interference/run.py b/g4f/interference/run.py
deleted file mode 100644
index e527ce11..00000000
--- a/g4f/interference/run.py
+++ /dev/null
@@ -1,4 +0,0 @@
-from g4f.interference import run_interference
-
-if __name__ == '__main__':
- run_interference() \ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
index 75549d68..4b0a46fd 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -10,4 +10,6 @@ flask
flask-cors
typing-extensions
PyExecJS
-duckduckgo-search \ No newline at end of file
+duckduckgo-search
+transformers
+tensorflow
diff --git a/setup.py b/setup.py
index 2e83cc82..5fb56896 100644
--- a/setup.py
+++ b/setup.py
@@ -11,10 +11,7 @@ with codecs.open(os.path.join(here, "README.md"), encoding="utf-8") as fh:
with open("requirements.txt") as f:
required = f.read().splitlines()
-with open("etc/interference/requirements.txt") as f:
- api_required = f.read().splitlines()
-
-VERSION = '0.1.6.1'
+VERSION = "0.1.6.1"
DESCRIPTION = (
"The official gpt4free repository | various collection of powerful language models"
)
@@ -29,13 +26,13 @@ setup(
long_description_content_type="text/markdown",
long_description=long_description,
packages=find_packages(),
- package_data={"g4f": ["g4f/gui/client/*", "g4f/gui/server/*"]},
+ package_data={
+ "g4f": ["g4f/interference/*", "g4f/gui/client/*", "g4f/gui/server/*"]
+ },
include_package_data=True,
- data_files=["etc/interference/app.py"],
install_requires=required,
- extras_require={"api": api_required},
entry_points={
- "console_scripts": ["g4f=interference.app:main"],
+ "console_scripts": ["g4f=g4f.cli:main"],
},
url="https://github.com/xtekky/gpt4free", # Link to your GitHub repository
project_urls={
@@ -75,4 +72,4 @@ setup(
"Operating System :: MacOS :: MacOS X",
"Operating System :: Microsoft :: Windows",
],
-) \ No newline at end of file
+)