diff options
author | Tekky <98614666+xtekky@users.noreply.github.com> | 2023-10-12 15:32:50 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-10-12 15:32:50 +0200 |
commit | 86248b44bcb4261c627335e24f5713e242793ece (patch) | |
tree | 59671d1777b76bade80b4a0c5ce8a42121878a9e /etc/interference/app.py | |
parent | ~ | Merge pull request #1053 from Lin-jun-xiang/fix_GptGo (diff) | |
parent | change "Models" to "Providers" (diff) | |
download | gpt4free-86248b44bcb4261c627335e24f5713e242793ece.tar gpt4free-86248b44bcb4261c627335e24f5713e242793ece.tar.gz gpt4free-86248b44bcb4261c627335e24f5713e242793ece.tar.bz2 gpt4free-86248b44bcb4261c627335e24f5713e242793ece.tar.lz gpt4free-86248b44bcb4261c627335e24f5713e242793ece.tar.xz gpt4free-86248b44bcb4261c627335e24f5713e242793ece.tar.zst gpt4free-86248b44bcb4261c627335e24f5713e242793ece.zip |
Diffstat (limited to 'etc/interference/app.py')
-rw-r--r-- | etc/interference/app.py | 163 |
1 files changed, 0 insertions, 163 deletions
diff --git a/etc/interference/app.py b/etc/interference/app.py deleted file mode 100644 index 5abbcff2..00000000 --- a/etc/interference/app.py +++ /dev/null @@ -1,163 +0,0 @@ -import json -import time -import random -import string -import requests - -from typing import Any -from flask import Flask, request -from flask_cors import CORS -from transformers import AutoTokenizer -from g4f import ChatCompletion - -app = Flask(__name__) -CORS(app) - -@app.route('/chat/completions', methods=['POST']) -def chat_completions(): - model = request.get_json().get('model', 'gpt-3.5-turbo') - stream = request.get_json().get('stream', False) - messages = request.get_json().get('messages') - - response = ChatCompletion.create(model = model, - stream = stream, messages = messages) - - completion_id = ''.join(random.choices(string.ascii_letters + string.digits, k=28)) - completion_timestamp = int(time.time()) - - if not stream: - return { - 'id': f'chatcmpl-{completion_id}', - 'object': 'chat.completion', - 'created': completion_timestamp, - 'model': model, - 'choices': [ - { - 'index': 0, - 'message': { - 'role': 'assistant', - 'content': response, - }, - 'finish_reason': 'stop', - } - ], - 'usage': { - 'prompt_tokens': None, - 'completion_tokens': None, - 'total_tokens': None, - }, - } - - def streaming(): - for chunk in response: - completion_data = { - 'id': f'chatcmpl-{completion_id}', - 'object': 'chat.completion.chunk', - 'created': completion_timestamp, - 'model': model, - 'choices': [ - { - 'index': 0, - 'delta': { - 'content': chunk, - }, - 'finish_reason': None, - } - ], - } - - content = json.dumps(completion_data, separators=(',', ':')) - yield f'data: {content}\n\n' - time.sleep(0.1) - - end_completion_data: dict[str, Any] = { - 'id': f'chatcmpl-{completion_id}', - 'object': 'chat.completion.chunk', - 'created': completion_timestamp, - 'model': model, - 'choices': [ - { - 'index': 0, - 'delta': {}, - 'finish_reason': 'stop', - } - ], - } - content = json.dumps(end_completion_data, separators=(',', ':')) - yield f'data: {content}\n\n' - - return app.response_class(streaming(), mimetype='text/event-stream') - - -# Get the embedding from huggingface -def get_embedding(input_text, token): - huggingface_token = token - embedding_model = 'sentence-transformers/all-mpnet-base-v2' - max_token_length = 500 - - # Load the tokenizer for the 'all-mpnet-base-v2' model - tokenizer = AutoTokenizer.from_pretrained(embedding_model) - # Tokenize the text and split the tokens into chunks of 500 tokens each - tokens = tokenizer.tokenize(input_text) - token_chunks = [tokens[i:i + max_token_length] - for i in range(0, len(tokens), max_token_length)] - - # Initialize an empty list - embeddings = [] - - # Create embeddings for each chunk - for chunk in token_chunks: - # Convert the chunk tokens back to text - chunk_text = tokenizer.convert_tokens_to_string(chunk) - - # Use the Hugging Face API to get embeddings for the chunk - api_url = f'https://api-inference.huggingface.co/pipeline/feature-extraction/{embedding_model}' - headers = {'Authorization': f'Bearer {huggingface_token}'} - chunk_text = chunk_text.replace('\n', ' ') - - # Make a POST request to get the chunk's embedding - response = requests.post(api_url, headers=headers, json={ - 'inputs': chunk_text, 'options': {'wait_for_model': True}}) - - # Parse the response and extract the embedding - chunk_embedding = response.json() - # Append the embedding to the list - embeddings.append(chunk_embedding) - - # averaging all the embeddings - # this isn't very effective - # someone a better idea? - num_embeddings = len(embeddings) - average_embedding = [sum(x) / num_embeddings for x in zip(*embeddings)] - embedding = average_embedding - return embedding - - -@app.route('/embeddings', methods=['POST']) -def embeddings(): - input_text_list = request.get_json().get('input') - input_text = ' '.join(map(str, input_text_list)) - token = request.headers.get('Authorization').replace('Bearer ', '') - embedding = get_embedding(input_text, token) - - return { - 'data': [ - { - 'embedding': embedding, - 'index': 0, - 'object': 'embedding' - } - ], - 'model': 'text-embedding-ada-002', - 'object': 'list', - 'usage': { - 'prompt_tokens': None, - 'total_tokens': None - } - } - -def main(): - app.run(host='0.0.0.0', port=1337, debug=True) - -if __name__ == '__main__': - main()
\ No newline at end of file |