1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
|
// InterpolNoise.h
// Implements the cInterpolNoise class template representing a noise that interpolates the values between integer coords from a single set of neighbors
#pragma once
#include "Noise.h"
#define FAST_FLOOR(x) (((x) < 0) ? (((int)x) - 1) : ((int)x))
////////////////////////////////////////////////////////////////////////////////
// cInterpolCell2D:
template <typename T>
class cInterpolCell2D
{
public:
cInterpolCell2D(
const cNoise & a_Noise, ///< Noise to use for generating the random values
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, ///< Count of the array, in each direction
const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values
const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values
):
m_Noise(a_Noise),
m_WorkRnds(&m_Workspace1),
m_CurFloorX(0),
m_CurFloorY(0),
m_Array(a_Array),
m_SizeX(a_SizeX),
m_SizeY(a_SizeY),
m_FracX(a_FracX),
m_FracY(a_FracY)
{
}
/** Generates part of the output noise array using the current m_WorkRnds[] values */
void Generate(
int a_FromX, int a_ToX,
int a_FromY, int a_ToY
)
{
for (int y = a_FromY; y < a_ToY; y++)
{
NOISE_DATATYPE Interp[2];
NOISE_DATATYPE FracY = T::coeff(m_FracY[y]);
Interp[0] = Lerp((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], FracY);
Interp[1] = Lerp((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], FracY);
int idx = y * m_SizeX + a_FromX;
for (int x = a_FromX; x < a_ToX; x++)
{
m_Array[idx++] = Lerp(Interp[0], Interp[1], T::coeff(m_FracX[x]));
} // for x
} // for y
}
/** Initializes m_WorkRnds[] with the specified values of the noise at the specified integral coords. */
void InitWorkRnds(int a_FloorX, int a_FloorY)
{
m_CurFloorX = a_FloorX;
m_CurFloorY = a_FloorY;
(*m_WorkRnds)[0][0] = m_Noise.IntNoise2D(m_CurFloorX, m_CurFloorY);
(*m_WorkRnds)[0][1] = m_Noise.IntNoise2D(m_CurFloorX, m_CurFloorY + 1);
(*m_WorkRnds)[1][0] = m_Noise.IntNoise2D(m_CurFloorX + 1, m_CurFloorY);
(*m_WorkRnds)[1][1] = m_Noise.IntNoise2D(m_CurFloorX + 1, m_CurFloorY + 1);
}
/** Updates m_WorkRnds[] for the new integral coords */
void Move(int a_NewFloorX, int a_NewFloorY)
{
// Swap the doublebuffer:
int OldFloorX = m_CurFloorX;
int OldFloorY = m_CurFloorY;
Workspace * OldWorkRnds = m_WorkRnds;
m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1;
// Reuse as much of the old workspace as possible:
// TODO: Try out if simply calculating all 4 elements each time is faster than this monster loop
int DiffX = OldFloorX - a_NewFloorX;
int DiffY = OldFloorY - a_NewFloorY;
for (int x = 0; x < 2; x++)
{
int cx = a_NewFloorX + x;
int OldX = x - DiffX; // Where would this X be in the old grid?
for (int y = 0; y < 2; y++)
{
int cy = a_NewFloorY + y;
int OldY = y - DiffY; // Where would this Y be in the old grid?
if ((OldX >= 0) && (OldX < 2) && (OldY >= 0) && (OldY < 2))
{
(*m_WorkRnds)[x][y] = (*OldWorkRnds)[OldX][OldY];
}
else
{
(*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy);
}
}
}
m_CurFloorX = a_NewFloorX;
m_CurFloorY = a_NewFloorY;
}
protected:
typedef NOISE_DATATYPE Workspace[2][2];
/** The noise used for generating the values at integral coords. */
const cNoise & m_Noise;
/** The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering) */
Workspace * m_WorkRnds;
/** Buffer 1 for workspace doublebuffering, used in Move() */
Workspace m_Workspace1;
/** Buffer 2 for workspace doublebuffering, used in Move() */
Workspace m_Workspace2;
/** Coords of the currently calculated m_WorkRnds[]. */
int m_CurFloorX, m_CurFloorY;
/** The output array to generate into. */
NOISE_DATATYPE * m_Array;
/** Dimensions of the output array. */
int m_SizeX, m_SizeY;
/** Arrays holding the fractional values of the coords in each direction. */
const NOISE_DATATYPE * m_FracX;
const NOISE_DATATYPE * m_FracY;
} ;
////////////////////////////////////////////////////////////////////////////////
// cInterpolCell3D:
/** Holds a cache of the last calculated integral noise values and interpolates between them en masse.
Provides a massive optimization for cInterpolNoise.
Works by calculating multiple noise values (that have the same integral noise coords) at once. The underlying noise values
needn't be recalculated for these values, only the interpolation is done within the unit cube. */
template <typename T>
class cInterpolCell3D
{
public:
cInterpolCell3D(
const cNoise & a_Noise, ///< Noise to use for generating the random values
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction
const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values
const NOISE_DATATYPE * a_FracY, ///< Pointer to the attay that stores the Y fractional values
const NOISE_DATATYPE * a_FracZ ///< Pointer to the array that stores the Z fractional values
):
m_Noise(a_Noise),
m_WorkRnds(&m_Workspace1),
m_CurFloorX(0),
m_CurFloorY(0),
m_CurFloorZ(0),
m_Array(a_Array),
m_SizeX(a_SizeX),
m_SizeY(a_SizeY),
m_SizeZ(a_SizeZ),
m_FracX(a_FracX),
m_FracY(a_FracY),
m_FracZ(a_FracZ)
{
}
/** Generates part of the output array using current m_WorkRnds[]. */
void Generate(
int a_FromX, int a_ToX,
int a_FromY, int a_ToY,
int a_FromZ, int a_ToZ
)
{
for (int z = a_FromZ; z < a_ToZ; z++)
{
int idxZ = z * m_SizeX * m_SizeY;
NOISE_DATATYPE Interp2[2][2];
NOISE_DATATYPE FracZ = T::coeff(m_FracZ[z]);
for (int x = 0; x < 2; x++)
{
for (int y = 0; y < 2; y++)
{
Interp2[x][y] = Lerp((*m_WorkRnds)[x][y][0], (*m_WorkRnds)[x][y][1], FracZ);
}
}
for (int y = a_FromY; y < a_ToY; y++)
{
NOISE_DATATYPE Interp[2];
NOISE_DATATYPE FracY = T::coeff(m_FracY[y]);
Interp[0] = Lerp(Interp2[0][0], Interp2[0][1], FracY);
Interp[1] = Lerp(Interp2[1][0], Interp2[1][1], FracY);
int idx = idxZ + y * m_SizeX + a_FromX;
for (int x = a_FromX; x < a_ToX; x++)
{
m_Array[idx++] = Lerp(Interp[0], Interp[1], T::coeff(m_FracX[x]));
} // for x
} // for y
} // for z
}
/** Initializes m_WorkRnds[] with the specified Floor values. */
void InitWorkRnds(int a_FloorX, int a_FloorY, int a_FloorZ)
{
m_CurFloorX = a_FloorX;
m_CurFloorY = a_FloorY;
m_CurFloorZ = a_FloorZ;
(*m_WorkRnds)[0][0][0] = (NOISE_DATATYPE)m_Noise.IntNoise3D(m_CurFloorX, m_CurFloorY, m_CurFloorZ);
(*m_WorkRnds)[0][0][1] = (NOISE_DATATYPE)m_Noise.IntNoise3D(m_CurFloorX, m_CurFloorY, m_CurFloorZ + 1);
(*m_WorkRnds)[0][1][0] = (NOISE_DATATYPE)m_Noise.IntNoise3D(m_CurFloorX, m_CurFloorY + 1, m_CurFloorZ);
(*m_WorkRnds)[0][1][1] = (NOISE_DATATYPE)m_Noise.IntNoise3D(m_CurFloorX, m_CurFloorY + 1, m_CurFloorZ + 1);
(*m_WorkRnds)[1][0][0] = (NOISE_DATATYPE)m_Noise.IntNoise3D(m_CurFloorX + 1, m_CurFloorY, m_CurFloorZ);
(*m_WorkRnds)[1][0][1] = (NOISE_DATATYPE)m_Noise.IntNoise3D(m_CurFloorX + 1, m_CurFloorY, m_CurFloorZ + 1);
(*m_WorkRnds)[1][1][0] = (NOISE_DATATYPE)m_Noise.IntNoise3D(m_CurFloorX + 1, m_CurFloorY + 1, m_CurFloorZ);
(*m_WorkRnds)[1][1][1] = (NOISE_DATATYPE)m_Noise.IntNoise3D(m_CurFloorX + 1, m_CurFloorY + 1, m_CurFloorZ + 1);
}
/** Updates m_WorkRnds[] for the new Floor values. */
void Move(int a_NewFloorX, int a_NewFloorY, int a_NewFloorZ)
{
// Swap the doublebuffer:
int OldFloorX = m_CurFloorX;
int OldFloorY = m_CurFloorY;
int OldFloorZ = m_CurFloorZ;
Workspace * OldWorkRnds = m_WorkRnds;
m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1;
// Reuse as much of the old workspace as possible:
// TODO: Try out if simply calculating all 8 elements each time is faster than this monster loop
int DiffX = OldFloorX - a_NewFloorX;
int DiffY = OldFloorY - a_NewFloorY;
int DiffZ = OldFloorZ - a_NewFloorZ;
for (int x = 0; x < 2; x++)
{
int cx = a_NewFloorX + x;
int OldX = x - DiffX; // Where would this X be in the old grid?
for (int y = 0; y < 2; y++)
{
int cy = a_NewFloorY + y;
int OldY = y - DiffY; // Where would this Y be in the old grid?
for (int z = 0; z < 2; z++)
{
int cz = a_NewFloorZ + z;
int OldZ = z - DiffZ;
if ((OldX >= 0) && (OldX < 2) && (OldY >= 0) && (OldY < 2) && (OldZ >= 0) && (OldZ < 2))
{
(*m_WorkRnds)[x][y][z] = (*OldWorkRnds)[OldX][OldY][OldZ];
}
else
{
(*m_WorkRnds)[x][y][z] = (NOISE_DATATYPE)m_Noise.IntNoise3D(cx, cy, cz);
}
} // for z
} // for y
} // for x
m_CurFloorX = a_NewFloorX;
m_CurFloorY = a_NewFloorY;
m_CurFloorZ = a_NewFloorZ;
}
protected:
typedef NOISE_DATATYPE Workspace[2][2][2];
/** The noise used for generating the values at integral coords. */
const cNoise & m_Noise;
/** The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering) */
Workspace * m_WorkRnds;
/** Buffer 1 for workspace doublebuffering, used in Move() */
Workspace m_Workspace1;
/** Buffer 2 for workspace doublebuffering, used in Move() */
Workspace m_Workspace2;
/** The integral coords of the currently calculated WorkRnds[] */
int m_CurFloorX, m_CurFloorY, m_CurFloorZ;
/** The output array where the noise is calculated. */
NOISE_DATATYPE * m_Array;
/** Dimensions of the output array. */
int m_SizeX, m_SizeY, m_SizeZ;
/** Arrays holding the fractional values of the coords in each direction. */
const NOISE_DATATYPE * m_FracX;
const NOISE_DATATYPE * m_FracY;
const NOISE_DATATYPE * m_FracZ;
} ;
////////////////////////////////////////////////////////////////////////////////
// cInterpolNoise:
template <typename T>
class cInterpolNoise
{
/** Maximum size, for each direction, of the generated array. */
static const int MAX_SIZE = 256;
public:
cInterpolNoise(int a_Seed):
m_Noise(a_Seed)
{
}
/** Sets a new seed for the generators. Relays the seed to the underlying noise. */
void SetSeed(int a_Seed)
{
m_Noise.SetSeed(a_Seed);
}
/** Fills a 2D array with the values of the noise. */
void Generate2D(
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, ///< Count of the array, in each direction
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY ///< Noise-space coords of the array in the Y direction
) const
{
ASSERT(a_SizeX > 0);
ASSERT(a_SizeY > 0);
ASSERT(a_SizeX < MAX_SIZE);
ASSERT(a_SizeY < MAX_SIZE);
ASSERT(a_StartX < a_EndX);
ASSERT(a_StartY < a_EndY);
// Calculate the integral and fractional parts of each coord:
int FloorX[MAX_SIZE];
int FloorY[MAX_SIZE];
NOISE_DATATYPE FracX[MAX_SIZE];
NOISE_DATATYPE FracY[MAX_SIZE];
int SameX[MAX_SIZE];
int SameY[MAX_SIZE];
int NumSameX, NumSameY;
CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX);
CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY);
cInterpolCell2D<T> Cell(m_Noise, a_Array, a_SizeX, a_SizeY, FracX, FracY);
Cell.InitWorkRnds(FloorX[0], FloorY[0]);
// Calculate query values using Cell:
int FromY = 0;
for (int y = 0; y < NumSameY; y++)
{
int ToY = FromY + SameY[y];
int FromX = 0;
int CurFloorY = FloorY[FromY];
for (int x = 0; x < NumSameX; x++)
{
int ToX = FromX + SameX[x];
Cell.Generate(FromX, ToX, FromY, ToY);
Cell.Move(FloorX[ToX], CurFloorY);
FromX = ToX;
} // for x
Cell.Move(FloorX[0], FloorY[ToY]);
FromY = ToY;
} // for y
}
/** Fills a 3D array with the values of the noise. */
void Generate3D(
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z]
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction
NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ ///< Noise-space coords of the array in the Z direction
) const
{
// Check params:
ASSERT(a_SizeX > 1);
ASSERT(a_SizeY > 1);
ASSERT(a_SizeX < MAX_SIZE);
ASSERT(a_SizeY < MAX_SIZE);
ASSERT(a_SizeZ < MAX_SIZE);
ASSERT(a_StartX < a_EndX);
ASSERT(a_StartY < a_EndY);
ASSERT(a_StartZ < a_EndZ);
// Calculate the integral and fractional parts of each coord:
int FloorX[MAX_SIZE];
int FloorY[MAX_SIZE];
int FloorZ[MAX_SIZE];
NOISE_DATATYPE FracX[MAX_SIZE];
NOISE_DATATYPE FracY[MAX_SIZE];
NOISE_DATATYPE FracZ[MAX_SIZE];
int SameX[MAX_SIZE];
int SameY[MAX_SIZE];
int SameZ[MAX_SIZE];
int NumSameX, NumSameY, NumSameZ;
CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX);
CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY);
CalcFloorFrac(a_SizeZ, a_StartZ, a_EndZ, FloorZ, FracZ, SameZ, NumSameZ);
cInterpolCell3D<T> Cell(
m_Noise, a_Array,
a_SizeX, a_SizeY, a_SizeZ,
FracX, FracY, FracZ
);
Cell.InitWorkRnds(FloorX[0], FloorY[0], FloorZ[0]);
// Calculate query values using Cell:
int FromZ = 0;
for (int z = 0; z < NumSameZ; z++)
{
int ToZ = FromZ + SameZ[z];
int CurFloorZ = FloorZ[FromZ];
int FromY = 0;
for (int y = 0; y < NumSameY; y++)
{
int ToY = FromY + SameY[y];
int CurFloorY = FloorY[FromY];
int FromX = 0;
for (int x = 0; x < NumSameX; x++)
{
int ToX = FromX + SameX[x];
Cell.Generate(FromX, ToX, FromY, ToY, FromZ, ToZ);
Cell.Move(FloorX[ToX], CurFloorY, CurFloorZ);
FromX = ToX;
}
Cell.Move(FloorX[0], FloorY[ToY], CurFloorZ);
FromY = ToY;
} // for y
Cell.Move(FloorX[0], FloorY[0], FloorZ[ToZ]);
FromZ = ToZ;
} // for z
}
protected:
/** The noise used for the underlying value generation. */
cNoise m_Noise;
/** Calculates the integral and fractional parts along one axis.
a_Floor will receive the integral parts (array of a_Size ints).
a_Frac will receive the fractional parts (array of a_Size floats).
a_Same will receive the counts of items that have the same integral parts (array of up to a_Size ints).
a_NumSame will receive the count of a_Same elements (total count of different integral parts). */
void CalcFloorFrac(
int a_Size,
NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End,
int * a_Floor, NOISE_DATATYPE * a_Frac,
int * a_Same, int & a_NumSame
) const
{
ASSERT(a_Size > 0);
// Calculate the floor and frac values:
NOISE_DATATYPE val = a_Start;
NOISE_DATATYPE dif = (a_End - a_Start) / (a_Size - 1);
for (int i = 0; i < a_Size; i++)
{
a_Floor[i] = FAST_FLOOR(val);
a_Frac[i] = val - a_Floor[i];
val += dif;
}
// Mark up the same floor values into a_Same / a_NumSame:
int CurFloor = a_Floor[0];
int LastSame = 0;
a_NumSame = 0;
for (int i = 1; i < a_Size; i++)
{
if (a_Floor[i] != CurFloor)
{
a_Same[a_NumSame] = i - LastSame;
LastSame = i;
a_NumSame += 1;
CurFloor = a_Floor[i];
}
} // for i - a_Floor[]
if (LastSame < a_Size)
{
a_Same[a_NumSame] = a_Size - LastSame;
a_NumSame += 1;
}
}
};
/** A fifth-degree curve for interpolating.
Implemented as a functor for better chance of inlining. */
struct Interp5Deg
{
static NOISE_DATATYPE coeff(NOISE_DATATYPE a_Val)
{
return a_Val * a_Val * a_Val * (a_Val * (a_Val * 6 - 15) + 10);
}
};
typedef cInterpolNoise<Interp5Deg> cInterp5DegNoise;
|