1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
// Crypto.cpp
// Implements classes that wrap the cryptographic code library
#include "Globals.h"
#include "Crypto.h"
#include "polarssl/pk.h"
/*
// Self-test the hash formatting for known values:
// sha1(Notch) : 4ed1f46bbe04bc756bcb17c0c7ce3e4632f06a48
// sha1(jeb_) : -7c9d5b0044c130109a5d7b5fb5c317c02b4e28c1
// sha1(simon) : 88e16a1019277b15d58faf0541e11910eb756f6
class Test
{
public:
Test(void)
{
AString DigestNotch, DigestJeb, DigestSimon;
Byte Digest[20];
cSHA1Checksum Checksum;
Checksum.Update((const Byte *)"Notch", 5);
Checksum.Finalize(Digest);
cSHA1Checksum::DigestToJava(Digest, DigestNotch);
Checksum.Restart();
Checksum.Update((const Byte *)"jeb_", 4);
Checksum.Finalize(Digest);
cSHA1Checksum::DigestToJava(Digest, DigestJeb);
Checksum.Restart();
Checksum.Update((const Byte *)"simon", 5);
Checksum.Finalize(Digest);
cSHA1Checksum::DigestToJava(Digest, DigestSimon);
printf("Notch: \"%s\"\n", DigestNotch.c_str());
printf("jeb_: \"%s\"\n", DigestJeb.c_str());
printf("simon: \"%s\"\n", DigestSimon.c_str());
assert(DigestNotch == "4ed1f46bbe04bc756bcb17c0c7ce3e4632f06a48");
assert(DigestJeb == "-7c9d5b0044c130109a5d7b5fb5c317c02b4e28c1");
assert(DigestSimon == "88e16a1019277b15d58faf0541e11910eb756f6");
}
} test;
*/
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cRSAPrivateKey:
cRSAPrivateKey::cRSAPrivateKey(void)
{
rsa_init(&m_Rsa, RSA_PKCS_V15, 0);
InitRnd();
}
cRSAPrivateKey::cRSAPrivateKey(const cRSAPrivateKey & a_Other)
{
rsa_init(&m_Rsa, RSA_PKCS_V15, 0);
rsa_copy(&m_Rsa, &a_Other.m_Rsa);
InitRnd();
}
cRSAPrivateKey::~cRSAPrivateKey()
{
entropy_free(&m_Entropy);
rsa_free(&m_Rsa);
}
void cRSAPrivateKey::InitRnd(void)
{
entropy_init(&m_Entropy);
const unsigned char pers[] = "rsa_genkey";
ctr_drbg_init(&m_Ctr_drbg, entropy_func, &m_Entropy, pers, sizeof(pers) - 1);
}
bool cRSAPrivateKey::Generate(unsigned a_KeySizeBits)
{
if (rsa_gen_key(&m_Rsa, ctr_drbg_random, &m_Ctr_drbg, a_KeySizeBits, 65537) != 0)
{
// Key generation failed
return false;
}
return true;
}
AString cRSAPrivateKey::GetPubKeyDER(void)
{
class cPubKey
{
public:
cPubKey(rsa_context * a_Rsa) :
m_IsValid(false)
{
pk_init(&m_Key);
if (pk_init_ctx(&m_Key, pk_info_from_type(POLARSSL_PK_RSA)) != 0)
{
ASSERT(!"Cannot init PrivKey context");
return;
}
if (rsa_copy(pk_rsa(m_Key), a_Rsa) != 0)
{
ASSERT(!"Cannot copy PrivKey to PK context");
return;
}
m_IsValid = true;
}
~cPubKey()
{
if (m_IsValid)
{
pk_free(&m_Key);
}
}
operator pk_context * (void) { return &m_Key; }
protected:
bool m_IsValid;
pk_context m_Key;
} PkCtx(&m_Rsa);
unsigned char buf[3000];
int res = pk_write_pubkey_der(PkCtx, buf, sizeof(buf));
if (res < 0)
{
return AString();
}
return AString((const char *)(buf + sizeof(buf) - res), (size_t)res);
}
int cRSAPrivateKey::Decrypt(const Byte * a_EncryptedData, size_t a_EncryptedLength, Byte * a_DecryptedData, size_t a_DecryptedMaxLength)
{
if (a_EncryptedLength < m_Rsa.len)
{
LOGD("%s: Invalid a_EncryptedLength: got %u, exp at least %u",
__FUNCTION__, (unsigned)a_EncryptedLength, (unsigned)(m_Rsa.len)
);
ASSERT(!"Invalid a_DecryptedMaxLength!");
return -1;
}
if (a_DecryptedMaxLength < m_Rsa.len)
{
LOGD("%s: Invalid a_DecryptedMaxLength: got %u, exp at least %u",
__FUNCTION__, (unsigned)a_EncryptedLength, (unsigned)(m_Rsa.len)
);
ASSERT(!"Invalid a_DecryptedMaxLength!");
return -1;
}
size_t DecryptedLength;
int res = rsa_pkcs1_decrypt(
&m_Rsa, ctr_drbg_random, &m_Ctr_drbg, RSA_PRIVATE, &DecryptedLength,
a_EncryptedData, a_DecryptedData, a_DecryptedMaxLength
);
if (res != 0)
{
return -1;
}
return (int)DecryptedLength;
}
int cRSAPrivateKey::Encrypt(const Byte * a_PlainData, size_t a_PlainLength, Byte * a_EncryptedData, size_t a_EncryptedMaxLength)
{
if (a_EncryptedMaxLength < m_Rsa.len)
{
LOGD("%s: Invalid a_EncryptedMaxLength: got %u, exp at least %u",
__FUNCTION__, (unsigned)a_EncryptedMaxLength, (unsigned)(m_Rsa.len)
);
ASSERT(!"Invalid a_DecryptedMaxLength!");
return -1;
}
if (a_PlainLength < m_Rsa.len)
{
LOGD("%s: Invalid a_PlainLength: got %u, exp at least %u",
__FUNCTION__, (unsigned)a_PlainLength, (unsigned)(m_Rsa.len)
);
ASSERT(!"Invalid a_PlainLength!");
return -1;
}
int res = rsa_pkcs1_encrypt(
&m_Rsa, ctr_drbg_random, &m_Ctr_drbg, RSA_PUBLIC,
a_PlainLength, a_PlainData, a_EncryptedData
);
if (res != 0)
{
return -1;
}
return (int)m_Rsa.len;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cAESCFBDecryptor:
cAESCFBDecryptor::cAESCFBDecryptor(void) :
m_IsValid(false),
m_IVOffset(0)
{
}
cAESCFBDecryptor::~cAESCFBDecryptor()
{
// Clear the leftover in-memory data, so that they can't be accessed by a backdoor
memset(&m_Aes, 0, sizeof(m_Aes));
}
void cAESCFBDecryptor::Init(const Byte a_Key[16], const Byte a_IV[16])
{
ASSERT(!IsValid()); // Cannot Init twice
memcpy(m_IV, a_IV, 16);
aes_setkey_enc(&m_Aes, a_Key, 128);
m_IsValid = true;
}
void cAESCFBDecryptor::ProcessData(Byte * a_DecryptedOut, const Byte * a_EncryptedIn, size_t a_Length)
{
ASSERT(IsValid()); // Must Init() first
// PolarSSL doesn't support AES-CFB8, need to implement it manually:
for (size_t i = 0; i < a_Length; i++)
{
Byte Buffer[sizeof(m_IV)];
aes_crypt_ecb(&m_Aes, AES_ENCRYPT, m_IV, Buffer);
for (size_t idx = 0; idx < sizeof(m_IV) - 1; idx++)
{
m_IV[idx] = m_IV[idx + 1];
}
m_IV[sizeof(m_IV) - 1] = a_EncryptedIn[i];
a_DecryptedOut[i] = a_EncryptedIn[i] ^ Buffer[0];
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cAESCFBEncryptor:
cAESCFBEncryptor::cAESCFBEncryptor(void) :
m_IsValid(false),
m_IVOffset(0)
{
}
cAESCFBEncryptor::~cAESCFBEncryptor()
{
// Clear the leftover in-memory data, so that they can't be accessed by a backdoor
memset(&m_Aes, 0, sizeof(m_Aes));
}
void cAESCFBEncryptor::Init(const Byte a_Key[16], const Byte a_IV[16])
{
ASSERT(!IsValid()); // Cannot Init twice
ASSERT(m_IVOffset == 0);
memcpy(m_IV, a_IV, 16);
aes_setkey_enc(&m_Aes, a_Key, 128);
m_IsValid = true;
}
void cAESCFBEncryptor::ProcessData(Byte * a_EncryptedOut, const Byte * a_PlainIn, size_t a_Length)
{
ASSERT(IsValid()); // Must Init() first
// PolarSSL doesn't do AES-CFB8, so we need to implement it ourselves:
for (size_t i = 0; i < a_Length; i++)
{
Byte Buffer[sizeof(m_IV)];
aes_crypt_ecb(&m_Aes, AES_ENCRYPT, m_IV, Buffer);
for (size_t idx = 0; idx < sizeof(m_IV) - 1; idx++)
{
m_IV[idx] = m_IV[idx + 1];
}
a_EncryptedOut[i] = a_PlainIn[i] ^ Buffer[0];
m_IV[sizeof(m_IV) - 1] = a_EncryptedOut[i];
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cSHA1Checksum:
cSHA1Checksum::cSHA1Checksum(void) :
m_DoesAcceptInput(true)
{
sha1_starts(&m_Sha1);
}
void cSHA1Checksum::Update(const Byte * a_Data, size_t a_Length)
{
ASSERT(m_DoesAcceptInput); // Not Finalize()-d yet, or Restart()-ed
sha1_update(&m_Sha1, a_Data, a_Length);
}
void cSHA1Checksum::Finalize(cSHA1Checksum::Checksum & a_Output)
{
ASSERT(m_DoesAcceptInput); // Not Finalize()-d yet, or Restart()-ed
sha1_finish(&m_Sha1, a_Output);
m_DoesAcceptInput = false;
}
void cSHA1Checksum::DigestToJava(const Checksum & a_Digest, AString & a_Out)
{
Checksum Digest;
memcpy(Digest, a_Digest, sizeof(Digest));
bool IsNegative = (Digest[0] >= 0x80);
if (IsNegative)
{
// Two's complement:
bool carry = true; // Add one to the whole number
for (int i = 19; i >= 0; i--)
{
Digest[i] = ~Digest[i];
if (carry)
{
carry = (Digest[i] == 0xff);
Digest[i]++;
}
}
}
a_Out.clear();
a_Out.reserve(40);
for (int i = 0; i < 20; i++)
{
AppendPrintf(a_Out, "%02x", Digest[i]);
}
while ((a_Out.length() > 0) && (a_Out[0] == '0'))
{
a_Out.erase(0, 1);
}
if (IsNegative)
{
a_Out.insert(0, "-");
}
}
void cSHA1Checksum::Restart(void)
{
sha1_starts(&m_Sha1);
m_DoesAcceptInput = true;
}
|