summaryrefslogtreecommitdiffstats
path: root/lib/cryptopp/algebra.h
blob: 13038bd80cd23262f53aa0f5dcf8e04708d3f4cc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
#ifndef CRYPTOPP_ALGEBRA_H
#define CRYPTOPP_ALGEBRA_H

#include "config.h"

NAMESPACE_BEGIN(CryptoPP)

class Integer;

// "const Element&" returned by member functions are references
// to internal data members. Since each object may have only
// one such data member for holding results, the following code
// will produce incorrect results:
// abcd = group.Add(group.Add(a,b), group.Add(c,d));
// But this should be fine:
// abcd = group.Add(a, group.Add(b, group.Add(c,d));

//! Abstract Group
template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup
{
public:
	typedef T Element;

	virtual ~AbstractGroup() {}

	virtual bool Equal(const Element &a, const Element &b) const =0;
	virtual const Element& Identity() const =0;
	virtual const Element& Add(const Element &a, const Element &b) const =0;
	virtual const Element& Inverse(const Element &a) const =0;
	virtual bool InversionIsFast() const {return false;}

	virtual const Element& Double(const Element &a) const;
	virtual const Element& Subtract(const Element &a, const Element &b) const;
	virtual Element& Accumulate(Element &a, const Element &b) const;
	virtual Element& Reduce(Element &a, const Element &b) const;

	virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
	virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;

	virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
};

//! Abstract Ring
template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>
{
public:
	typedef T Element;

	AbstractRing() {m_mg.m_pRing = this;}
	AbstractRing(const AbstractRing &source) {m_mg.m_pRing = this;}
	AbstractRing& operator=(const AbstractRing &source) {return *this;}

	virtual bool IsUnit(const Element &a) const =0;
	virtual const Element& MultiplicativeIdentity() const =0;
	virtual const Element& Multiply(const Element &a, const Element &b) const =0;
	virtual const Element& MultiplicativeInverse(const Element &a) const =0;

	virtual const Element& Square(const Element &a) const;
	virtual const Element& Divide(const Element &a, const Element &b) const;

	virtual Element Exponentiate(const Element &a, const Integer &e) const;
	virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;

	virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;

	virtual const AbstractGroup<T>& MultiplicativeGroup() const
		{return m_mg;}

private:
	class MultiplicativeGroupT : public AbstractGroup<T>
	{
	public:
		const AbstractRing<T>& GetRing() const
			{return *m_pRing;}

		bool Equal(const Element &a, const Element &b) const
			{return GetRing().Equal(a, b);}

		const Element& Identity() const
			{return GetRing().MultiplicativeIdentity();}

		const Element& Add(const Element &a, const Element &b) const
			{return GetRing().Multiply(a, b);}

		Element& Accumulate(Element &a, const Element &b) const
			{return a = GetRing().Multiply(a, b);}

		const Element& Inverse(const Element &a) const
			{return GetRing().MultiplicativeInverse(a);}

		const Element& Subtract(const Element &a, const Element &b) const
			{return GetRing().Divide(a, b);}

		Element& Reduce(Element &a, const Element &b) const
			{return a = GetRing().Divide(a, b);}

		const Element& Double(const Element &a) const
			{return GetRing().Square(a);}

		Element ScalarMultiply(const Element &a, const Integer &e) const
			{return GetRing().Exponentiate(a, e);}

		Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
			{return GetRing().CascadeExponentiate(x, e1, y, e2);}

		void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
			{GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);}

		const AbstractRing<T> *m_pRing;
	};

	MultiplicativeGroupT m_mg;
};

// ********************************************************

//! Base and Exponent
template <class T, class E = Integer>
struct BaseAndExponent
{
public:
	BaseAndExponent() {}
	BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {}
	bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;}
	T base;
	E exponent;
};

// VC60 workaround: incomplete member template support
template <class Element, class Iterator>
	Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);
template <class Element, class Iterator>
	Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);

// ********************************************************

//! Abstract Euclidean Domain
template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>
{
public:
	typedef T Element;

	virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;

	virtual const Element& Mod(const Element &a, const Element &b) const =0;
	virtual const Element& Gcd(const Element &a, const Element &b) const;

protected:
	mutable Element result;
};

// ********************************************************

//! EuclideanDomainOf
template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
{
public:
	typedef T Element;

	EuclideanDomainOf() {}

	bool Equal(const Element &a, const Element &b) const
		{return a==b;}

	const Element& Identity() const
		{return Element::Zero();}

	const Element& Add(const Element &a, const Element &b) const
		{return result = a+b;}

	Element& Accumulate(Element &a, const Element &b) const
		{return a+=b;}

	const Element& Inverse(const Element &a) const
		{return result = -a;}

	const Element& Subtract(const Element &a, const Element &b) const
		{return result = a-b;}

	Element& Reduce(Element &a, const Element &b) const
		{return a-=b;}

	const Element& Double(const Element &a) const
		{return result = a.Doubled();}

	const Element& MultiplicativeIdentity() const
		{return Element::One();}

	const Element& Multiply(const Element &a, const Element &b) const
		{return result = a*b;}

	const Element& Square(const Element &a) const
		{return result = a.Squared();}

	bool IsUnit(const Element &a) const
		{return a.IsUnit();}

	const Element& MultiplicativeInverse(const Element &a) const
		{return result = a.MultiplicativeInverse();}

	const Element& Divide(const Element &a, const Element &b) const
		{return result = a/b;}

	const Element& Mod(const Element &a, const Element &b) const
		{return result = a%b;}

	void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
		{Element::Divide(r, q, a, d);}

	bool operator==(const EuclideanDomainOf<T> &rhs) const
		{return true;}

private:
	mutable Element result;
};

//! Quotient Ring
template <class T> class QuotientRing : public AbstractRing<typename T::Element>
{
public:
	typedef T EuclideanDomain;
	typedef typename T::Element Element;

	QuotientRing(const EuclideanDomain &domain, const Element &modulus)
		: m_domain(domain), m_modulus(modulus) {}

	const EuclideanDomain & GetDomain() const
		{return m_domain;}

	const Element& GetModulus() const
		{return m_modulus;}

	bool Equal(const Element &a, const Element &b) const
		{return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());}

	const Element& Identity() const
		{return m_domain.Identity();}

	const Element& Add(const Element &a, const Element &b) const
		{return m_domain.Add(a, b);}

	Element& Accumulate(Element &a, const Element &b) const
		{return m_domain.Accumulate(a, b);}

	const Element& Inverse(const Element &a) const
		{return m_domain.Inverse(a);}

	const Element& Subtract(const Element &a, const Element &b) const
		{return m_domain.Subtract(a, b);}

	Element& Reduce(Element &a, const Element &b) const
		{return m_domain.Reduce(a, b);}

	const Element& Double(const Element &a) const
		{return m_domain.Double(a);}

	bool IsUnit(const Element &a) const
		{return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}

	const Element& MultiplicativeIdentity() const
		{return m_domain.MultiplicativeIdentity();}

	const Element& Multiply(const Element &a, const Element &b) const
		{return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}

	const Element& Square(const Element &a) const
		{return m_domain.Mod(m_domain.Square(a), m_modulus);}

	const Element& MultiplicativeInverse(const Element &a) const;

	bool operator==(const QuotientRing<T> &rhs) const
		{return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;}

protected:
	EuclideanDomain m_domain;
	Element m_modulus;
};

NAMESPACE_END

#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "algebra.cpp"
#endif

#endif