1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
// Processor.cpp
// Implements the cProcessor class representing the overall processor engine that manages threads, calls callbacks etc.
#include "Globals.h"
#include "Processor.h"
#include "Callback.h"
#include "../source/WorldStorage/FastNBT.h"
#include "zlib.h"
const int CHUNK_INFLATE_MAX = 1 MiB;
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cProcessor::cThread:
cProcessor::cThread::cThread(cCallback & a_Callback, cProcessor & a_ParentProcessor) :
super("cProcessor::cThread"),
m_Callback(a_Callback),
m_ParentProcessor(a_ParentProcessor)
{
super::Start();
}
void cProcessor::cThread::Execute(void)
{
for (;;)
{
AString FileName = m_ParentProcessor.GetOneFileName();
if (FileName.empty())
{
// All done, terminate the thread
return;
}
ProcessFile(FileName);
} // for-ever
}
void cProcessor::cThread::ProcessFile(const AString & a_FileName)
{
LOG("Processing file \"%s\"", a_FileName.c_str());
size_t idx = a_FileName.rfind("r.");
if (idx == AString::npos)
{
LOG("Cannot parse filename \"%s\", skipping file.", a_FileName.c_str());
return;
}
int RegionX = 0, RegionZ = 0;
if (sscanf_s(a_FileName.c_str() + idx, "r.%d.%d.mca", &RegionX, &RegionZ) != 2)
{
LOG("Cannot parse filename \"%s\" into coords, skipping file.", a_FileName.c_str());
return;
}
cFile f;
if (!f.Open(a_FileName, cFile::fmRead))
{
LOG("Cannot open file \"%s\", skipping file.", a_FileName.c_str());
return;
}
AString FileContents;
f.ReadRestOfFile(FileContents);
if (FileContents.size() < sizeof(8 KiB))
{
LOG("Cannot read header in file \"%s\", skipping file.", a_FileName.c_str());
return;
}
ProcessFileData(FileContents.data(), FileContents.size(), RegionX * 32, RegionZ * 32);
}
void cProcessor::cThread::ProcessFileData(const char * a_FileData, size_t a_Size, int a_ChunkBaseX, int a_ChunkBaseZ)
{
int Header[2048];
int * HeaderPtr = (int *)a_FileData;
for (int i = 0; i < ARRAYCOUNT(Header); i++)
{
Header[i] = ntohl(HeaderPtr[i]);
}
for (int i = 0; i < 1024; i++)
{
unsigned Location = Header[i];
unsigned Timestamp = Header[i + 1024];
if (
((Location == 0) && (Timestamp == 0)) || // Official docs' "not present"
(Location >> 8 < 2) || // Logical - no chunk can start inside the header
((Location & 0xff) == 0) || // Logical - no chunk can be zero bytes
((Location >> 8) * 4096 > a_Size) // Logical - no chunk can start at beyond the file end
)
{
// Chunk not present in the file
continue;
}
int ChunkX = a_ChunkBaseX + (i % 32);
int ChunkZ = a_ChunkBaseZ + (i / 32);
if (m_Callback.OnNewChunk(ChunkX, ChunkZ))
{
continue;
}
ProcessChunk(a_FileData, ChunkX, ChunkZ, Location >> 8, Location & 0xff, Timestamp);
} // for i - chunk index
}
void cProcessor::cThread::ProcessChunk(const char * a_FileData, int a_ChunkX, int a_ChunkZ, unsigned a_SectorStart, unsigned a_SectorSize, unsigned a_TimeStamp)
{
if (m_Callback.OnHeader(a_SectorStart * 4096, a_SectorSize, a_TimeStamp))
{
return;
}
const char * ChunkStart = a_FileData + a_SectorStart * 4096;
int ByteSize = ntohl(*(int *)ChunkStart);
char CompressionMethod = ChunkStart[4];
if (m_Callback.OnCompressedDataSizePos(ByteSize, a_SectorStart * 4096 + 5, CompressionMethod))
{
return;
}
ProcessCompressedChunkData(a_ChunkX, a_ChunkZ, ChunkStart + 5, ByteSize);
}
void cProcessor::cThread::ProcessCompressedChunkData(int a_ChunkX, int a_ChunkZ, const char * a_CompressedData, int a_CompressedSize)
{
char Decompressed[CHUNK_INFLATE_MAX];
z_stream strm;
strm.zalloc = (alloc_func)NULL;
strm.zfree = (free_func)NULL;
strm.opaque = NULL;
inflateInit(&strm);
strm.next_out = (Bytef *)Decompressed;
strm.avail_out = sizeof(Decompressed);
strm.next_in = (Bytef *)a_CompressedData;
strm.avail_in = a_CompressedSize;
int res = inflate(&strm, Z_FINISH);
inflateEnd(&strm);
if (res != Z_STREAM_END)
{
LOG("Decompression failed, skipping chunk [%d, %d]", a_ChunkX, a_ChunkZ);
return;
}
if (m_Callback.OnDecompressedData(Decompressed, strm.total_out))
{
return;
}
// Parse the NBT data:
cParsedNBT NBT(Decompressed, strm.total_out);
if (!NBT.IsValid())
{
LOG("NBT Parsing failed, skipping chunk [%d, %d]", a_ChunkX, a_ChunkZ);
return;
}
ProcessParsedChunkData(a_ChunkX, a_ChunkZ, NBT);
}
void cProcessor::cThread::ProcessParsedChunkData(int a_ChunkX, int a_ChunkZ, cParsedNBT & a_NBT)
{
int LevelTag = a_NBT.FindChildByName(0, "Level");
if (LevelTag < 0)
{
LOG("Bad logical structure of the NBT, skipping chunk [%d, %d].", a_ChunkX, a_ChunkZ);
return;
}
int XPosTag = a_NBT.FindChildByName(LevelTag, "xPos");
int ZPosTag = a_NBT.FindChildByName(LevelTag, "zPos");
if ((XPosTag < 0) || (ZPosTag < 0))
{
LOG("Pos tags missing in NTB, skipping chunk [%d, %d].", a_ChunkX, a_ChunkZ);
return;
}
if (m_Callback.OnRealCoords(a_NBT.GetInt(XPosTag), a_NBT.GetInt(ZPosTag)))
{
return;
}
int LastUpdateTag = a_NBT.FindChildByName(LevelTag, "LastUpdate");
if (LastUpdateTag > 0)
{
if (m_Callback.OnLastUpdate(a_NBT.GetLong(LastUpdateTag)))
{
return;
}
}
int TerrainPopulatedTag = a_NBT.FindChildByName(LevelTag, "TerrainPopulated");
bool TerrainPopulated = (TerrainPopulatedTag < 0) ? false : (a_NBT.GetByte(TerrainPopulatedTag) != 0);
if (m_Callback.OnTerrainPopulated(TerrainPopulated))
{
return;
}
int BiomesTag = a_NBT.FindChildByName(LevelTag, "Biomes");
if (BiomesTag > 0)
{
if (m_Callback.OnBiomes((const unsigned char *)(a_NBT.GetData(BiomesTag))))
{
return;
}
}
int HeightMapTag = a_NBT.FindChildByName(LevelTag, "HeightMap");
if (HeightMapTag > 0)
{
if (m_Callback.OnHeightMap((const int *)(a_NBT.GetData(HeightMapTag))))
{
return;
}
}
if (ProcessChunkSections(a_ChunkX, a_ChunkZ, a_NBT, LevelTag))
{
return;
}
// TODO: entities, tile-entities etc.
}
bool cProcessor::cThread::ProcessChunkSections(int a_ChunkX, int a_ChunkZ, cParsedNBT & a_NBT, int a_LevelTag)
{
int Sections = a_NBT.FindChildByName(a_LevelTag, "Sections");
if (Sections < 0)
{
return false;
}
for (int Tag = a_NBT.GetFirstChild(Sections); Tag > 0; Tag = a_NBT.GetNextSibling(Tag))
{
int YTag = a_NBT.FindChildByName(Tag, "Y");
int BlocksTag = a_NBT.FindChildByName(Tag, "Blocks");
int AddTag = a_NBT.FindChildByName(Tag, "Add");
int DataTag = a_NBT.FindChildByName(Tag, "Data");
int BlockLightTag = a_NBT.FindChildByName(Tag, "BlockLightTag");
int SkyLightTag = a_NBT.FindChildByName(Tag, "SkyLight");
if ((YTag < 0) || (BlocksTag < 0) || (DataTag < 0))
{
continue;
}
if (m_Callback.OnSection(
a_NBT.GetByte(YTag),
(const BLOCKTYPE *) (a_NBT.GetData(BlocksTag)),
(AddTag > 0) ? (const NIBBLETYPE *)(a_NBT.GetData(AddTag)) : NULL,
(const NIBBLETYPE *)(a_NBT.GetData(DataTag)),
(BlockLightTag > 0) ? (const NIBBLETYPE *)(a_NBT.GetData(BlockLightTag)) : NULL,
(BlockLightTag > 0) ? (const NIBBLETYPE *)(a_NBT.GetData(BlockLightTag)) : NULL
))
{
return true;
}
} // for Tag - Sections[]
return false;
}
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// cProcessor:
cProcessor::cProcessor(void) :
m_IsShuttingDown(false)
{
}
cProcessor::~cProcessor()
{
}
void cProcessor::ProcessWorld(const AString & a_WorldFolder, cCallbackFactory & a_CallbackFactory)
{
PopulateFileQueue(a_WorldFolder);
// Start as many threads as there are cores:
// Get number of cores by querying the system process affinity mask
DWORD Affinity, ProcAffinity;
GetProcessAffinityMask(GetCurrentProcess(), &ProcAffinity, &Affinity);
while (Affinity > 0)
{
if ((Affinity & 1) == 1)
{
cCallback * Callback = a_CallbackFactory.GetNewCallback();
m_Threads.push_back(new cThread(*Callback, *this));
}
Affinity >>= 1;
} // while (Affinity > 0)
if (m_Threads.size() == 0)
{
LOG("Zero cores detected - how am I running? Running in a single thread.");
cCallback * Callback = a_CallbackFactory.GetNewCallback();
m_Threads.push_back(new cThread(*Callback, *this));
}
// Wait for all threads to finish
// simply by calling each thread's destructor sequentially
for (cThreads::iterator itr = m_Threads.begin(), end = m_Threads.end(); itr != end; ++itr)
{
delete *itr;
} // for itr - m_Threads[]
}
void cProcessor::PopulateFileQueue(const AString & a_WorldFolder)
{
LOG("Processing world in \"%s\"...", a_WorldFolder.c_str());
AString Path = a_WorldFolder;
Path.push_back(cFile::PathSeparator);
AStringList AllFiles = GetDirectoryContents(Path.c_str());
for (AStringList::iterator itr = AllFiles.begin(), end = AllFiles.end(); itr != end; ++itr)
{
if (itr->rfind(".mca") != itr->length() - 4)
{
// Not a .mca file
continue;
}
m_FileQueue.push_back(Path + *itr);
} // for itr - AllFiles[]
}
AString cProcessor::GetOneFileName(void)
{
cCSLock Lock(m_CS);
if (m_FileQueue.empty())
{
return "";
}
AString res = m_FileQueue.back();
m_FileQueue.pop_back();
return res;
}
|