#include "Globals.h" // NOTE: MSVC stupidness requires this to be the same across all modules #include "Noise.h" #if NOISE_USE_SSE #include //_mm_mul_epi32 #endif #define FAST_FLOOR(x) (((x) < 0) ? (((int)x) - 1) : ((int)x)) /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // Globals: void IntArrayLinearInterpolate2D( int * a_Array, int a_SizeX, int a_SizeY, // Dimensions of the array int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction ) { // First interpolate columns where the anchor points are: int LastYCell = a_SizeY - a_AnchorStepY; for (int y = 0; y < LastYCell; y += a_AnchorStepY) { int Idx = a_SizeX * y; for (int x = 0; x < a_SizeX; x += a_AnchorStepX) { int StartValue = a_Array[Idx]; int EndValue = a_Array[Idx + a_SizeX * a_AnchorStepY]; int Diff = EndValue - StartValue; for (int CellY = 1; CellY < a_AnchorStepY; CellY++) { a_Array[Idx + a_SizeX * CellY] = StartValue + CellY * Diff / a_AnchorStepY; } // for CellY Idx += a_AnchorStepX; } // for x } // for y // Now interpolate in rows, each row has values in the anchor columns int LastXCell = a_SizeX - a_AnchorStepX; for (int y = 0; y < a_SizeY; y++) { int Idx = a_SizeX * y; for (int x = 0; x < LastXCell; x += a_AnchorStepX) { int StartValue = a_Array[Idx]; int EndValue = a_Array[Idx + a_AnchorStepX]; int Diff = EndValue - StartValue; for (int CellX = 1; CellX < a_AnchorStepX; CellX++) { a_Array[Idx + CellX] = StartValue + CellX * Diff / a_AnchorStepX; } // for CellY Idx += a_AnchorStepX; } } } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cCubicCell2D: class cCubicCell2D { public: cCubicCell2D( const cNoise & a_Noise, ///< Noise to use for generating the random values NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values ); /// Uses current m_WorkRnds[] to generate part of the array void Generate( int a_FromX, int a_ToX, int a_FromY, int a_ToY ); /// Initializes m_WorkRnds[] with the specified Floor values void InitWorkRnds(int a_FloorX, int a_FloorY); /// Updates m_WorkRnds[] for the new Floor values. void Move(int a_NewFloorX, int a_NewFloorY); protected: typedef NOISE_DATATYPE Workspace[4][4]; const cNoise & m_Noise; Workspace * m_WorkRnds; ///< The current random values; points to either m_Workspace1 or m_Workspace2 (doublebuffering) Workspace m_Workspace1; ///< Buffer 1 for workspace doublebuffering, used in Move() Workspace m_Workspace2; ///< Buffer 2 for workspace doublebuffering, used in Move() int m_CurFloorX; int m_CurFloorY; NOISE_DATATYPE * m_Array; int m_SizeX, m_SizeY; const NOISE_DATATYPE * m_FracX; const NOISE_DATATYPE * m_FracY; } ; cCubicCell2D::cCubicCell2D( const cNoise & a_Noise, ///< Noise to use for generating the random values NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction const NOISE_DATATYPE * a_FracX, ///< Pointer to the array that stores the X fractional values const NOISE_DATATYPE * a_FracY ///< Pointer to the attay that stores the Y fractional values ) : m_Noise(a_Noise), m_WorkRnds(&m_Workspace1), m_Array(a_Array), m_SizeX(a_SizeX), m_SizeY(a_SizeY), m_FracX(a_FracX), m_FracY(a_FracY) { } void cCubicCell2D::Generate( int a_FromX, int a_ToX, int a_FromY, int a_ToY ) { for (int y = a_FromY; y < a_ToY; y++) { NOISE_DATATYPE Interp[4]; NOISE_DATATYPE FracY = m_FracY[y]; Interp[0] = cNoise::CubicInterpolate((*m_WorkRnds)[0][0], (*m_WorkRnds)[0][1], (*m_WorkRnds)[0][2], (*m_WorkRnds)[0][3], FracY); Interp[1] = cNoise::CubicInterpolate((*m_WorkRnds)[1][0], (*m_WorkRnds)[1][1], (*m_WorkRnds)[1][2], (*m_WorkRnds)[1][3], FracY); Interp[2] = cNoise::CubicInterpolate((*m_WorkRnds)[2][0], (*m_WorkRnds)[2][1], (*m_WorkRnds)[2][2], (*m_WorkRnds)[2][3], FracY); Interp[3] = cNoise::CubicInterpolate((*m_WorkRnds)[3][0], (*m_WorkRnds)[3][1], (*m_WorkRnds)[3][2], (*m_WorkRnds)[3][3], FracY); int idx = y * m_SizeX + a_FromX; for (int x = a_FromX; x < a_ToX; x++) { m_Array[idx++] = cNoise::CubicInterpolate(Interp[0], Interp[1], Interp[2], Interp[3], m_FracX[x]); } // for x } // for y } void cCubicCell2D::InitWorkRnds(int a_FloorX, int a_FloorY) { m_CurFloorX = a_FloorX; m_CurFloorY = a_FloorY; for (int x = 0; x < 4; x++) { int cx = a_FloorX + x - 1; for (int y = 0; y < 4; y++) { int cy = a_FloorY + y - 1; (*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy); } } } void cCubicCell2D::Move(int a_NewFloorX, int a_NewFloorY) { // Swap the doublebuffer: int OldFloorX = m_CurFloorX; int OldFloorY = m_CurFloorY; Workspace * OldWorkRnds = m_WorkRnds; m_WorkRnds = (m_WorkRnds == &m_Workspace1) ? &m_Workspace2 : &m_Workspace1; // Reuse as much of the old workspace as possible: int DiffX = OldFloorX - a_NewFloorX; int DiffY = OldFloorY - a_NewFloorY; for (int x = 0; x < 4; x++) { int cx = a_NewFloorX + x - 1; int OldX = x - DiffX; // Where would this X be in the old grid? for (int y = 0; y < 4; y++) { int cy = a_NewFloorY + y - 1; int OldY = y - DiffY; // Where would this Y be in the old grid? if ((OldX >= 0) && (OldX < 4) && (OldY >= 0) && (OldY < 4)) { (*m_WorkRnds)[x][y] = (*OldWorkRnds)[OldX][OldY]; } else { (*m_WorkRnds)[x][y] = (NOISE_DATATYPE)m_Noise.IntNoise2D(cx, cy); } } } m_CurFloorX = a_NewFloorX; m_CurFloorY = a_NewFloorY; } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cNoise: cNoise::cNoise(unsigned int a_Seed) : m_Seed(a_Seed) { } cNoise::cNoise(const cNoise & a_Noise) : m_Seed(a_Noise.m_Seed) { } NOISE_DATATYPE cNoise::LinearNoise1D(NOISE_DATATYPE a_X) const { int BaseX = FAST_FLOOR(a_X); NOISE_DATATYPE FracX = a_X - BaseX; return LinearInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX); } NOISE_DATATYPE cNoise::CosineNoise1D(NOISE_DATATYPE a_X) const { int BaseX = FAST_FLOOR(a_X); NOISE_DATATYPE FracX = a_X - BaseX; return CosineInterpolate(IntNoise1D(BaseX), IntNoise1D(BaseX + 1), FracX); } NOISE_DATATYPE cNoise::CubicNoise1D(NOISE_DATATYPE a_X) const { int BaseX = FAST_FLOOR(a_X); NOISE_DATATYPE FracX = a_X - BaseX; return CubicInterpolate(IntNoise1D(BaseX - 1), IntNoise1D(BaseX), IntNoise1D(BaseX + 1), IntNoise1D(BaseX + 2), FracX); } NOISE_DATATYPE cNoise::SmoothNoise1D(int a_X) const { return IntNoise1D(a_X) / 2 + IntNoise1D(a_X - 1) / 4 + IntNoise1D(a_X + 1) / 4; } NOISE_DATATYPE cNoise::CubicNoise2D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y) const { const int BaseX = FAST_FLOOR(a_X); const int BaseY = FAST_FLOOR(a_Y); const NOISE_DATATYPE points[4][4] = { IntNoise2D(BaseX - 1, BaseY - 1), IntNoise2D(BaseX, BaseY - 1), IntNoise2D(BaseX + 1, BaseY - 1), IntNoise2D(BaseX + 2, BaseY - 1), IntNoise2D(BaseX - 1, BaseY), IntNoise2D(BaseX, BaseY), IntNoise2D(BaseX + 1, BaseY), IntNoise2D(BaseX + 2, BaseY), IntNoise2D(BaseX - 1, BaseY + 1), IntNoise2D(BaseX, BaseY + 1), IntNoise2D(BaseX + 1, BaseY + 1), IntNoise2D(BaseX + 2, BaseY + 1), IntNoise2D(BaseX - 1, BaseY + 2), IntNoise2D(BaseX, BaseY + 2), IntNoise2D(BaseX + 1, BaseY + 2), IntNoise2D(BaseX + 2, BaseY + 2), }; const NOISE_DATATYPE FracX = a_X - BaseX; const NOISE_DATATYPE interp1 = CubicInterpolate(points[0][0], points[0][1], points[0][2], points[0][3], FracX); const NOISE_DATATYPE interp2 = CubicInterpolate(points[1][0], points[1][1], points[1][2], points[1][3], FracX); const NOISE_DATATYPE interp3 = CubicInterpolate(points[2][0], points[2][1], points[2][2], points[2][3], FracX); const NOISE_DATATYPE interp4 = CubicInterpolate(points[3][0], points[3][1], points[3][2], points[3][3], FracX); const NOISE_DATATYPE FracY = a_Y - BaseY; return CubicInterpolate(interp1, interp2, interp3, interp4, FracY); } NOISE_DATATYPE cNoise::CubicNoise3D(NOISE_DATATYPE a_X, NOISE_DATATYPE a_Y, NOISE_DATATYPE a_Z) const { const int BaseX = FAST_FLOOR(a_X); const int BaseY = FAST_FLOOR(a_Y); const int BaseZ = FAST_FLOOR(a_Z); const NOISE_DATATYPE points1[4][4] = { IntNoise3D(BaseX - 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY - 1, BaseZ - 1), IntNoise3D(BaseX - 1, BaseY, BaseZ - 1), IntNoise3D(BaseX, BaseY, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY, BaseZ - 1), IntNoise3D(BaseX - 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 1, BaseZ - 1), IntNoise3D(BaseX - 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 1, BaseY + 2, BaseZ - 1), IntNoise3D(BaseX + 2, BaseY + 2, BaseZ - 1), }; const NOISE_DATATYPE FracX = (a_X) - BaseX; const NOISE_DATATYPE x1interp1 = CubicInterpolate( points1[0][0], points1[0][1], points1[0][2], points1[0][3], FracX ); const NOISE_DATATYPE x1interp2 = CubicInterpolate( points1[1][0], points1[1][1], points1[1][2], points1[1][3], FracX ); const NOISE_DATATYPE x1interp3 = CubicInterpolate( points1[2][0], points1[2][1], points1[2][2], points1[2][3], FracX ); const NOISE_DATATYPE x1interp4 = CubicInterpolate( points1[3][0], points1[3][1], points1[3][2], points1[3][3], FracX ); const NOISE_DATATYPE points2[4][4] = { IntNoise3D( BaseX-1, BaseY-1, BaseZ ), IntNoise3D( BaseX, BaseY-1, BaseZ ), IntNoise3D( BaseX+1, BaseY-1, BaseZ ), IntNoise3D( BaseX+2, BaseY-1, BaseZ ), IntNoise3D( BaseX-1, BaseY, BaseZ ), IntNoise3D( BaseX, BaseY, BaseZ ), IntNoise3D( BaseX+1, BaseY, BaseZ ), IntNoise3D( BaseX+2, BaseY, BaseZ ), IntNoise3D( BaseX-1, BaseY+1, BaseZ ), IntNoise3D( BaseX, BaseY+1, BaseZ ), IntNoise3D( BaseX+1, BaseY+1, BaseZ ), IntNoise3D( BaseX+2, BaseY+1, BaseZ ), IntNoise3D( BaseX-1, BaseY+2, BaseZ ), IntNoise3D( BaseX, BaseY+2, BaseZ ), IntNoise3D( BaseX+1, BaseY+2, BaseZ ), IntNoise3D( BaseX+2, BaseY+2, BaseZ ), }; const NOISE_DATATYPE x2interp1 = CubicInterpolate( points2[0][0], points2[0][1], points2[0][2], points2[0][3], FracX ); const NOISE_DATATYPE x2interp2 = CubicInterpolate( points2[1][0], points2[1][1], points2[1][2], points2[1][3], FracX ); const NOISE_DATATYPE x2interp3 = CubicInterpolate( points2[2][0], points2[2][1], points2[2][2], points2[2][3], FracX ); const NOISE_DATATYPE x2interp4 = CubicInterpolate( points2[3][0], points2[3][1], points2[3][2], points2[3][3], FracX ); const NOISE_DATATYPE points3[4][4] = { IntNoise3D( BaseX-1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY, BaseZ+1 ), IntNoise3D( BaseX, BaseY, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+1 ), IntNoise3D( BaseX-1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ+1 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+1 ), }; const NOISE_DATATYPE x3interp1 = CubicInterpolate( points3[0][0], points3[0][1], points3[0][2], points3[0][3], FracX ); const NOISE_DATATYPE x3interp2 = CubicInterpolate( points3[1][0], points3[1][1], points3[1][2], points3[1][3], FracX ); const NOISE_DATATYPE x3interp3 = CubicInterpolate( points3[2][0], points3[2][1], points3[2][2], points3[2][3], FracX ); const NOISE_DATATYPE x3interp4 = CubicInterpolate( points3[3][0], points3[3][1], points3[3][2], points3[3][3], FracX ); const NOISE_DATATYPE points4[4][4] = { IntNoise3D( BaseX-1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY-1, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY, BaseZ+2 ), IntNoise3D( BaseX, BaseY, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+1, BaseZ+2 ), IntNoise3D( BaseX-1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+1, BaseY+2, BaseZ+2 ), IntNoise3D( BaseX+2, BaseY+2, BaseZ+2 ), }; const NOISE_DATATYPE x4interp1 = CubicInterpolate( points4[0][0], points4[0][1], points4[0][2], points4[0][3], FracX ); const NOISE_DATATYPE x4interp2 = CubicInterpolate( points4[1][0], points4[1][1], points4[1][2], points4[1][3], FracX ); const NOISE_DATATYPE x4interp3 = CubicInterpolate( points4[2][0], points4[2][1], points4[2][2], points4[2][3], FracX ); const NOISE_DATATYPE x4interp4 = CubicInterpolate( points4[3][0], points4[3][1], points4[3][2], points4[3][3], FracX ); const NOISE_DATATYPE FracY = (a_Y) - BaseY; const NOISE_DATATYPE yinterp1 = CubicInterpolate( x1interp1, x1interp2, x1interp3, x1interp4, FracY ); const NOISE_DATATYPE yinterp2 = CubicInterpolate( x2interp1, x2interp2, x2interp3, x2interp4, FracY ); const NOISE_DATATYPE yinterp3 = CubicInterpolate( x3interp1, x3interp2, x3interp3, x3interp4, FracY ); const NOISE_DATATYPE yinterp4 = CubicInterpolate( x4interp1, x4interp2, x4interp3, x4interp4, FracY ); const NOISE_DATATYPE FracZ = (a_Z) - BaseZ; return CubicInterpolate( yinterp1, yinterp2, yinterp3, yinterp4, FracZ ); } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cCubicNoise: #ifdef _DEBUG int cCubicNoise::m_NumSingleX = 0; int cCubicNoise::m_NumSingleXY = 0; int cCubicNoise::m_NumSingleY = 0; int cCubicNoise::m_NumCalls = 0; #endif // _DEBUG cCubicNoise::cCubicNoise(int a_Seed) : m_Noise(a_Seed) { } void cCubicNoise::Generate2D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Size of the array (num doubles), in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY ///< Noise-space coords of the array in the Y direction ) const { ASSERT(a_SizeX < MAX_SIZE); ASSERT(a_SizeY < MAX_SIZE); ASSERT(a_StartX < a_EndX); ASSERT(a_StartY < a_EndY); // Calculate the integral and fractional parts of each coord: int FloorX[MAX_SIZE]; int FloorY[MAX_SIZE]; NOISE_DATATYPE FracX[MAX_SIZE]; NOISE_DATATYPE FracY[MAX_SIZE]; int SameX[MAX_SIZE]; int SameY[MAX_SIZE]; int NumSameX, NumSameY; CalcFloorFrac(a_SizeX, a_StartX, a_EndX, FloorX, FracX, SameX, NumSameX); CalcFloorFrac(a_SizeY, a_StartY, a_EndY, FloorY, FracY, SameY, NumSameY); cCubicCell2D Cell(m_Noise, a_Array, a_SizeX, a_SizeY, FracX, FracY); Cell.InitWorkRnds(FloorX[0], FloorY[0]); #ifdef _DEBUG // Statistics on the noise-space coords: if (NumSameX == 1) { m_NumSingleX++; if (NumSameY == 1) { m_NumSingleXY++; } } if (NumSameY == 1) { m_NumSingleY++; } m_NumCalls++; #endif _DEBUG // Calculate query values using Cell: int FromY = 0; for (int y = 0; y < NumSameY; y++) { int ToY = FromY + SameY[y]; int FromX = 0; int CurFloorY = FloorY[FromY]; for (int x = 0; x < NumSameX; x++) { int ToX = FromX + SameX[x]; Cell.Generate(FromX, ToX, FromY, ToY); Cell.Move(FloorX[ToX], CurFloorY); FromX = ToX; } Cell.Move(FloorX[0], FloorY[ToY]); FromY = ToY; } } void cCubicNoise::CalcFloorFrac( int a_Size, NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End, int * a_Floor, NOISE_DATATYPE * a_Frac, int * a_Same, int & a_NumSame ) const { NOISE_DATATYPE val = a_Start; NOISE_DATATYPE dif = (a_End - a_Start) / a_Size; for (int i = 0; i < a_Size; i++) { a_Floor[i] = FAST_FLOOR(val); a_Frac[i] = val - a_Floor[i]; val += dif; } // Mark up the same floor values into a_Same / a_NumSame: int CurFloor = a_Floor[0]; int LastSame = 0; a_NumSame = 0; for (int i = 1; i < a_Size; i++) { if (a_Floor[i] != CurFloor) { a_Same[a_NumSame] = i - LastSame; LastSame = i; a_NumSame += 1; CurFloor = a_Floor[i]; } } // for i - a_Floor[] if (LastSame < a_Size) { a_Same[a_NumSame] = a_Size - LastSame; a_NumSame += 1; } } /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // cPerlinNoise: cPerlinNoise::cPerlinNoise(void) : m_Seed(0) { } cPerlinNoise::cPerlinNoise(int a_Seed) : m_Seed(a_Seed) { } void cPerlinNoise::SetSeed(int a_Seed) { m_Seed = a_Seed; } void cPerlinNoise::AddOctave(float a_Frequency, float a_Amplitude) { m_Octaves.push_back(cOctave(m_Seed * (m_Octaves.size() + 4) * 4 + 1024, a_Frequency, a_Amplitude)); } void cPerlinNoise::Generate2D( NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y] int a_SizeX, int a_SizeY, ///< Count of the array, in each direction NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction NOISE_DATATYPE * a_Workspace ///< Workspace that this function can use and trash ) const { if (m_Octaves.empty()) { // No work to be done return; } bool ShouldFreeWorkspace = (a_Workspace == NULL); int ArrayCount = a_SizeX * a_SizeY; if (ShouldFreeWorkspace) { a_Workspace = new NOISE_DATATYPE[ArrayCount]; } // Generate the first octave directly into array: m_Octaves.front().m_Noise.Generate2D( a_Workspace, a_SizeX, a_SizeY, a_StartX * m_Octaves.front().m_Frequency, a_EndX * m_Octaves.front().m_Frequency, a_StartY * m_Octaves.front().m_Frequency, a_EndY * m_Octaves.front().m_Frequency ); NOISE_DATATYPE Amplitude = m_Octaves.front().m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] *= Amplitude; } // Add each octave: for (cOctaves::const_iterator itr = m_Octaves.begin() + 1, end = m_Octaves.end(); itr != end; ++itr) { // Generate cubic noise for the octave: itr->m_Noise.Generate2D( a_Workspace, a_SizeX, a_SizeY, a_StartX * itr->m_Frequency, a_EndX * itr->m_Frequency, a_StartY * itr->m_Frequency, a_EndY * itr->m_Frequency ); // Add the cubic noise into the output: NOISE_DATATYPE Amplitude = itr->m_Amplitude; for (int i = 0; i < ArrayCount; i++) { a_Array[i] += a_Workspace[i] * Amplitude; } } if (ShouldFreeWorkspace) { delete[] a_Workspace; } }