summaryrefslogtreecommitdiffstats
path: root/CryptoPP/algebra.h
diff options
context:
space:
mode:
Diffstat (limited to 'CryptoPP/algebra.h')
-rw-r--r--CryptoPP/algebra.h285
1 files changed, 0 insertions, 285 deletions
diff --git a/CryptoPP/algebra.h b/CryptoPP/algebra.h
deleted file mode 100644
index 13038bd80..000000000
--- a/CryptoPP/algebra.h
+++ /dev/null
@@ -1,285 +0,0 @@
-#ifndef CRYPTOPP_ALGEBRA_H
-#define CRYPTOPP_ALGEBRA_H
-
-#include "config.h"
-
-NAMESPACE_BEGIN(CryptoPP)
-
-class Integer;
-
-// "const Element&" returned by member functions are references
-// to internal data members. Since each object may have only
-// one such data member for holding results, the following code
-// will produce incorrect results:
-// abcd = group.Add(group.Add(a,b), group.Add(c,d));
-// But this should be fine:
-// abcd = group.Add(a, group.Add(b, group.Add(c,d));
-
-//! Abstract Group
-template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup
-{
-public:
- typedef T Element;
-
- virtual ~AbstractGroup() {}
-
- virtual bool Equal(const Element &a, const Element &b) const =0;
- virtual const Element& Identity() const =0;
- virtual const Element& Add(const Element &a, const Element &b) const =0;
- virtual const Element& Inverse(const Element &a) const =0;
- virtual bool InversionIsFast() const {return false;}
-
- virtual const Element& Double(const Element &a) const;
- virtual const Element& Subtract(const Element &a, const Element &b) const;
- virtual Element& Accumulate(Element &a, const Element &b) const;
- virtual Element& Reduce(Element &a, const Element &b) const;
-
- virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
- virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
-
- virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
-};
-
-//! Abstract Ring
-template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>
-{
-public:
- typedef T Element;
-
- AbstractRing() {m_mg.m_pRing = this;}
- AbstractRing(const AbstractRing &source) {m_mg.m_pRing = this;}
- AbstractRing& operator=(const AbstractRing &source) {return *this;}
-
- virtual bool IsUnit(const Element &a) const =0;
- virtual const Element& MultiplicativeIdentity() const =0;
- virtual const Element& Multiply(const Element &a, const Element &b) const =0;
- virtual const Element& MultiplicativeInverse(const Element &a) const =0;
-
- virtual const Element& Square(const Element &a) const;
- virtual const Element& Divide(const Element &a, const Element &b) const;
-
- virtual Element Exponentiate(const Element &a, const Integer &e) const;
- virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
-
- virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
-
- virtual const AbstractGroup<T>& MultiplicativeGroup() const
- {return m_mg;}
-
-private:
- class MultiplicativeGroupT : public AbstractGroup<T>
- {
- public:
- const AbstractRing<T>& GetRing() const
- {return *m_pRing;}
-
- bool Equal(const Element &a, const Element &b) const
- {return GetRing().Equal(a, b);}
-
- const Element& Identity() const
- {return GetRing().MultiplicativeIdentity();}
-
- const Element& Add(const Element &a, const Element &b) const
- {return GetRing().Multiply(a, b);}
-
- Element& Accumulate(Element &a, const Element &b) const
- {return a = GetRing().Multiply(a, b);}
-
- const Element& Inverse(const Element &a) const
- {return GetRing().MultiplicativeInverse(a);}
-
- const Element& Subtract(const Element &a, const Element &b) const
- {return GetRing().Divide(a, b);}
-
- Element& Reduce(Element &a, const Element &b) const
- {return a = GetRing().Divide(a, b);}
-
- const Element& Double(const Element &a) const
- {return GetRing().Square(a);}
-
- Element ScalarMultiply(const Element &a, const Integer &e) const
- {return GetRing().Exponentiate(a, e);}
-
- Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
- {return GetRing().CascadeExponentiate(x, e1, y, e2);}
-
- void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
- {GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);}
-
- const AbstractRing<T> *m_pRing;
- };
-
- MultiplicativeGroupT m_mg;
-};
-
-// ********************************************************
-
-//! Base and Exponent
-template <class T, class E = Integer>
-struct BaseAndExponent
-{
-public:
- BaseAndExponent() {}
- BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {}
- bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;}
- T base;
- E exponent;
-};
-
-// VC60 workaround: incomplete member template support
-template <class Element, class Iterator>
- Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);
-template <class Element, class Iterator>
- Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);
-
-// ********************************************************
-
-//! Abstract Euclidean Domain
-template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>
-{
-public:
- typedef T Element;
-
- virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;
-
- virtual const Element& Mod(const Element &a, const Element &b) const =0;
- virtual const Element& Gcd(const Element &a, const Element &b) const;
-
-protected:
- mutable Element result;
-};
-
-// ********************************************************
-
-//! EuclideanDomainOf
-template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
-{
-public:
- typedef T Element;
-
- EuclideanDomainOf() {}
-
- bool Equal(const Element &a, const Element &b) const
- {return a==b;}
-
- const Element& Identity() const
- {return Element::Zero();}
-
- const Element& Add(const Element &a, const Element &b) const
- {return result = a+b;}
-
- Element& Accumulate(Element &a, const Element &b) const
- {return a+=b;}
-
- const Element& Inverse(const Element &a) const
- {return result = -a;}
-
- const Element& Subtract(const Element &a, const Element &b) const
- {return result = a-b;}
-
- Element& Reduce(Element &a, const Element &b) const
- {return a-=b;}
-
- const Element& Double(const Element &a) const
- {return result = a.Doubled();}
-
- const Element& MultiplicativeIdentity() const
- {return Element::One();}
-
- const Element& Multiply(const Element &a, const Element &b) const
- {return result = a*b;}
-
- const Element& Square(const Element &a) const
- {return result = a.Squared();}
-
- bool IsUnit(const Element &a) const
- {return a.IsUnit();}
-
- const Element& MultiplicativeInverse(const Element &a) const
- {return result = a.MultiplicativeInverse();}
-
- const Element& Divide(const Element &a, const Element &b) const
- {return result = a/b;}
-
- const Element& Mod(const Element &a, const Element &b) const
- {return result = a%b;}
-
- void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
- {Element::Divide(r, q, a, d);}
-
- bool operator==(const EuclideanDomainOf<T> &rhs) const
- {return true;}
-
-private:
- mutable Element result;
-};
-
-//! Quotient Ring
-template <class T> class QuotientRing : public AbstractRing<typename T::Element>
-{
-public:
- typedef T EuclideanDomain;
- typedef typename T::Element Element;
-
- QuotientRing(const EuclideanDomain &domain, const Element &modulus)
- : m_domain(domain), m_modulus(modulus) {}
-
- const EuclideanDomain & GetDomain() const
- {return m_domain;}
-
- const Element& GetModulus() const
- {return m_modulus;}
-
- bool Equal(const Element &a, const Element &b) const
- {return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());}
-
- const Element& Identity() const
- {return m_domain.Identity();}
-
- const Element& Add(const Element &a, const Element &b) const
- {return m_domain.Add(a, b);}
-
- Element& Accumulate(Element &a, const Element &b) const
- {return m_domain.Accumulate(a, b);}
-
- const Element& Inverse(const Element &a) const
- {return m_domain.Inverse(a);}
-
- const Element& Subtract(const Element &a, const Element &b) const
- {return m_domain.Subtract(a, b);}
-
- Element& Reduce(Element &a, const Element &b) const
- {return m_domain.Reduce(a, b);}
-
- const Element& Double(const Element &a) const
- {return m_domain.Double(a);}
-
- bool IsUnit(const Element &a) const
- {return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}
-
- const Element& MultiplicativeIdentity() const
- {return m_domain.MultiplicativeIdentity();}
-
- const Element& Multiply(const Element &a, const Element &b) const
- {return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}
-
- const Element& Square(const Element &a) const
- {return m_domain.Mod(m_domain.Square(a), m_modulus);}
-
- const Element& MultiplicativeInverse(const Element &a) const;
-
- bool operator==(const QuotientRing<T> &rhs) const
- {return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;}
-
-protected:
- EuclideanDomain m_domain;
- Element m_modulus;
-};
-
-NAMESPACE_END
-
-#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
-#include "algebra.cpp"
-#endif
-
-#endif