diff options
author | Tiger Wang <ziwei.tiger@hotmail.co.uk> | 2013-11-27 22:35:13 +0100 |
---|---|---|
committer | Tiger Wang <ziwei.tiger@hotmail.co.uk> | 2013-11-27 22:35:13 +0100 |
commit | a6630d32394120a78af56bc612fa3c3449283248 (patch) | |
tree | 2c791266b0f213cd56961299da8d2258b8f85d8e /src/LightingThread.h | |
parent | Fixed spawn point being generally in an ocean (diff) | |
parent | Voronoi-related biomegens use the new cVoronoiMap class. (diff) | |
download | cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.gz cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.bz2 cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.lz cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.xz cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.zst cuberite-a6630d32394120a78af56bc612fa3c3449283248.zip |
Diffstat (limited to 'src/LightingThread.h')
-rw-r--r-- | src/LightingThread.h | 181 |
1 files changed, 181 insertions, 0 deletions
diff --git a/src/LightingThread.h b/src/LightingThread.h new file mode 100644 index 000000000..498755025 --- /dev/null +++ b/src/LightingThread.h @@ -0,0 +1,181 @@ + +// LightingThread.h + +// Interfaces to the cLightingThread class representing the thread that processes requests for lighting + +/* +Lighting is done on whole chunks. For each chunk to be lighted, the whole 3x3 chunk area around it is read, +then it is processed, so that the middle chunk area has valid lighting, and the lighting is copied into the ChunkMap. +Lighting is calculated in full char arrays instead of nibbles, so that accessing the arrays is fast. +Lighting is calculated in a flood-fill fashion: +1. Generate seeds from where the light spreads (full skylight / light-emitting blocks) +2. For each seed: + - Spread the light 1 block in each of the 6 cardinal directions, if the blocktype allows + - If the recipient block has had lower lighting value than that being spread, make it a new seed +3. Repeat step 2, until there are no more seeds +The seeds need two fast operations: + - Check if a block at [x, y, z] is already a seed + - Get the next seed in the row +For that reason it is stored in two arrays, one stores a bool saying a seed is in that position, +the other is an array of seed coords, encoded as a single int. +Step 2 needs two separate storages for old seeds and new seeds, so there are two actual storages for that purpose, +their content is swapped after each full step-2-cycle. + +The thread has two queues of chunks that are to be lighted. +The first queue, m_Queue, is the only one that is publicly visible, chunks get queued there by external requests. +The second one, m_PostponedQueue, is for chunks that have been taken out of m_Queue and didn't have neighbors ready. +Chunks from m_PostponedQueue are moved back into m_Queue when their neighbors get valid, using the ChunkReady callback. +*/ + + + +#pragma once + +#include "OSSupport/IsThread.h" +#include "ChunkDef.h" + + + + + +// fwd: "cWorld.h" +class cWorld; + +// fwd: "cChunkMap.h" +class cChunkStay; + + + + + +class cLightingThread : + public cIsThread +{ + typedef cIsThread super; + +public: + + cLightingThread(void); + ~cLightingThread(); + + bool Start(cWorld * a_World); + + void Stop(void); + + /// Queues the entire chunk for lighting + void QueueChunk(int a_ChunkX, int a_ChunkZ, cChunkCoordCallback * a_CallbackAfter = NULL); + + /// Blocks until the queue is empty or the thread is terminated + void WaitForQueueEmpty(void); + + size_t GetQueueLength(void); + + /// Called from cWorld when a chunk gets valid. Chunks in m_PostponedQueue may need moving into m_Queue + void ChunkReady(int a_ChunkX, int a_ChunkZ); + +protected: + + struct sItem + { + int x, z; + cChunkStay * m_ChunkStay; + cChunkCoordCallback * m_Callback; + + sItem(void) {} // empty default constructor needed + sItem(int a_X, int a_Z, cChunkStay * a_ChunkStay, cChunkCoordCallback * a_Callback) : + x(a_X), + z(a_Z), + m_ChunkStay(a_ChunkStay), + m_Callback(a_Callback) + { + } + } ; + + typedef std::list<sItem> sItems; + + cWorld * m_World; + cCriticalSection m_CS; + sItems m_Queue; + sItems m_PostponedQueue; // Chunks that have been postponed due to missing neighbors + cEvent m_evtItemAdded; // Set when queue is appended, or to stop the thread + cEvent m_evtQueueEmpty; // Set when the queue gets empty + + // Buffers for the 3x3 chunk data + // These buffers alone are 1.7 MiB in size, therefore they cannot be located on the stack safely - some architectures may have only 1 MiB for stack, or even less + // Placing the buffers into the object means that this object can light chunks only in one thread! + // The blobs are XZY organized as a whole, instead of 3x3 XZY-organized subarrays -> + // -> This means data has to be scatterred when reading and gathered when writing! + static const int BlocksPerYLayer = cChunkDef::Width * cChunkDef::Width * 3 * 3; + BLOCKTYPE m_BlockTypes[BlocksPerYLayer * cChunkDef::Height]; + NIBBLETYPE m_BlockLight[BlocksPerYLayer * cChunkDef::Height]; + NIBBLETYPE m_SkyLight [BlocksPerYLayer * cChunkDef::Height]; + HEIGHTTYPE m_HeightMap [BlocksPerYLayer]; + + // Seed management (5.7 MiB) + // Two buffers, in each calc step one is set as input and the other as output, then in the next step they're swapped + // Each seed is represented twice in this structure - both as a "list" and as a "position". + // "list" allows fast traversal from seed to seed + // "position" allows fast checking if a coord is already a seed + unsigned char m_IsSeed1 [BlocksPerYLayer * cChunkDef::Height]; + unsigned int m_SeedIdx1[BlocksPerYLayer * cChunkDef::Height]; + unsigned char m_IsSeed2 [BlocksPerYLayer * cChunkDef::Height]; + unsigned int m_SeedIdx2[BlocksPerYLayer * cChunkDef::Height]; + int m_NumSeeds; + + virtual void Execute(void) override; + + /// Lights the entire chunk. If neighbor chunks don't exist, touches them and re-queues the chunk + void LightChunk(sItem & a_Item); + + /// Prepares m_BlockTypes and m_HeightMap data; returns false if any of the chunks fail. Zeroes out the light arrays + bool ReadChunks(int a_ChunkX, int a_ChunkZ); + + /// Uses m_HeightMap to initialize the m_SkyLight[] data; fills in seeds for the skylight + void PrepareSkyLight(void); + + /// Uses m_BlockTypes to initialize the m_BlockLight[] data; fills in seeds for the blocklight + void PrepareBlockLight(void); + + /// Calculates light in the light array specified, using stored seeds + void CalcLight(NIBBLETYPE * a_Light); + + /// Does one step in the light calculation - one seed propagation and seed recalculation + void CalcLightStep( + NIBBLETYPE * a_Light, + int a_NumSeedsIn, unsigned char * a_IsSeedIn, unsigned int * a_SeedIdxIn, + int & a_NumSeedsOut, unsigned char * a_IsSeedOut, unsigned int * a_SeedIdxOut + ); + + /// Compresses from 1-block-per-byte (faster calc) into 2-blocks-per-byte (MC storage): + void CompressLight(NIBBLETYPE * a_LightArray, NIBBLETYPE * a_ChunkLight); + + inline void PropagateLight( + NIBBLETYPE * a_Light, + int a_SrcIdx, int a_DstIdx, + int & a_NumSeedsOut, unsigned char * a_IsSeedOut, unsigned int * a_SeedIdxOut + ) + { + ASSERT(a_SrcIdx >= 0); + ASSERT(a_SrcIdx < ARRAYCOUNT(m_SkyLight)); + ASSERT(a_DstIdx >= 0); + ASSERT(a_DstIdx < ARRAYCOUNT(m_BlockTypes)); + + if (a_Light[a_SrcIdx] <= a_Light[a_DstIdx] + g_BlockSpreadLightFalloff[m_BlockTypes[a_DstIdx]]) + { + // We're not offering more light than the dest block already has + return; + } + + a_Light[a_DstIdx] = a_Light[a_SrcIdx] - g_BlockSpreadLightFalloff[m_BlockTypes[a_DstIdx]]; + if (!a_IsSeedOut[a_DstIdx]) + { + a_IsSeedOut[a_DstIdx] = true; + a_SeedIdxOut[a_NumSeedsOut++] = a_DstIdx; + } + } + +} ; + + + + |