diff options
author | madmaxoft <github@xoft.cz> | 2014-01-22 22:26:40 +0100 |
---|---|---|
committer | madmaxoft <github@xoft.cz> | 2014-01-22 22:26:40 +0100 |
commit | 34f13d589a2ebbcae9230732c7a763b3cdd88b41 (patch) | |
tree | 4f7bad4f90ca8f7a896d83951804f0207082cafb /lib/cryptopp/gf2n.h | |
parent | Replacing CryptoPP with PolarSSL. (diff) | |
download | cuberite-34f13d589a2ebbcae9230732c7a763b3cdd88b41.tar cuberite-34f13d589a2ebbcae9230732c7a763b3cdd88b41.tar.gz cuberite-34f13d589a2ebbcae9230732c7a763b3cdd88b41.tar.bz2 cuberite-34f13d589a2ebbcae9230732c7a763b3cdd88b41.tar.lz cuberite-34f13d589a2ebbcae9230732c7a763b3cdd88b41.tar.xz cuberite-34f13d589a2ebbcae9230732c7a763b3cdd88b41.tar.zst cuberite-34f13d589a2ebbcae9230732c7a763b3cdd88b41.zip |
Diffstat (limited to 'lib/cryptopp/gf2n.h')
-rw-r--r-- | lib/cryptopp/gf2n.h | 369 |
1 files changed, 0 insertions, 369 deletions
diff --git a/lib/cryptopp/gf2n.h b/lib/cryptopp/gf2n.h deleted file mode 100644 index 67ade641e..000000000 --- a/lib/cryptopp/gf2n.h +++ /dev/null @@ -1,369 +0,0 @@ -#ifndef CRYPTOPP_GF2N_H -#define CRYPTOPP_GF2N_H - -/*! \file */ - -#include "cryptlib.h" -#include "secblock.h" -#include "misc.h" -#include "algebra.h" - -#include <iosfwd> - -NAMESPACE_BEGIN(CryptoPP) - -//! Polynomial with Coefficients in GF(2) -/*! \nosubgrouping */ -class CRYPTOPP_DLL PolynomialMod2 -{ -public: - //! \name ENUMS, EXCEPTIONS, and TYPEDEFS - //@{ - //! divide by zero exception - class DivideByZero : public Exception - { - public: - DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {} - }; - - typedef unsigned int RandomizationParameter; - //@} - - //! \name CREATORS - //@{ - //! creates the zero polynomial - PolynomialMod2(); - //! copy constructor - PolynomialMod2(const PolynomialMod2& t); - - //! convert from word - /*! value should be encoded with the least significant bit as coefficient to x^0 - and most significant bit as coefficient to x^(WORD_BITS-1) - bitLength denotes how much memory to allocate initially - */ - PolynomialMod2(word value, size_t bitLength=WORD_BITS); - - //! convert from big-endian byte array - PolynomialMod2(const byte *encodedPoly, size_t byteCount) - {Decode(encodedPoly, byteCount);} - - //! convert from big-endian form stored in a BufferedTransformation - PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount) - {Decode(encodedPoly, byteCount);} - - //! create a random polynomial uniformly distributed over all polynomials with degree less than bitcount - PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount) - {Randomize(rng, bitcount);} - - //! return x^i - static PolynomialMod2 CRYPTOPP_API Monomial(size_t i); - //! return x^t0 + x^t1 + x^t2 - static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2); - //! return x^t0 + x^t1 + x^t2 + x^t3 + x^t4 - static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4); - //! return x^(n-1) + ... + x + 1 - static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n); - - //! - static const PolynomialMod2 & CRYPTOPP_API Zero(); - //! - static const PolynomialMod2 & CRYPTOPP_API One(); - //@} - - //! \name ENCODE/DECODE - //@{ - //! minimum number of bytes to encode this polynomial - /*! MinEncodedSize of 0 is 1 */ - unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());} - - //! encode in big-endian format - /*! if outputLen < MinEncodedSize, the most significant bytes will be dropped - if outputLen > MinEncodedSize, the most significant bytes will be padded - */ - void Encode(byte *output, size_t outputLen) const; - //! - void Encode(BufferedTransformation &bt, size_t outputLen) const; - - //! - void Decode(const byte *input, size_t inputLen); - //! - //* Precondition: bt.MaxRetrievable() >= inputLen - void Decode(BufferedTransformation &bt, size_t inputLen); - - //! encode value as big-endian octet string - void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const; - //! decode value as big-endian octet string - void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length); - //@} - - //! \name ACCESSORS - //@{ - //! number of significant bits = Degree() + 1 - unsigned int BitCount() const; - //! number of significant bytes = ceiling(BitCount()/8) - unsigned int ByteCount() const; - //! number of significant words = ceiling(ByteCount()/sizeof(word)) - unsigned int WordCount() const; - - //! return the n-th bit, n=0 being the least significant bit - bool GetBit(size_t n) const {return GetCoefficient(n)!=0;} - //! return the n-th byte - byte GetByte(size_t n) const; - - //! the zero polynomial will return a degree of -1 - signed int Degree() const {return BitCount()-1;} - //! degree + 1 - unsigned int CoefficientCount() const {return BitCount();} - //! return coefficient for x^i - int GetCoefficient(size_t i) const - {return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;} - //! return coefficient for x^i - int operator[](unsigned int i) const {return GetCoefficient(i);} - - //! - bool IsZero() const {return !*this;} - //! - bool Equals(const PolynomialMod2 &rhs) const; - //@} - - //! \name MANIPULATORS - //@{ - //! - PolynomialMod2& operator=(const PolynomialMod2& t); - //! - PolynomialMod2& operator&=(const PolynomialMod2& t); - //! - PolynomialMod2& operator^=(const PolynomialMod2& t); - //! - PolynomialMod2& operator+=(const PolynomialMod2& t) {return *this ^= t;} - //! - PolynomialMod2& operator-=(const PolynomialMod2& t) {return *this ^= t;} - //! - PolynomialMod2& operator*=(const PolynomialMod2& t); - //! - PolynomialMod2& operator/=(const PolynomialMod2& t); - //! - PolynomialMod2& operator%=(const PolynomialMod2& t); - //! - PolynomialMod2& operator<<=(unsigned int); - //! - PolynomialMod2& operator>>=(unsigned int); - - //! - void Randomize(RandomNumberGenerator &rng, size_t bitcount); - - //! - void SetBit(size_t i, int value = 1); - //! set the n-th byte to value - void SetByte(size_t n, byte value); - - //! - void SetCoefficient(size_t i, int value) {SetBit(i, value);} - - //! - void swap(PolynomialMod2 &a) {reg.swap(a.reg);} - //@} - - //! \name UNARY OPERATORS - //@{ - //! - bool operator!() const; - //! - PolynomialMod2 operator+() const {return *this;} - //! - PolynomialMod2 operator-() const {return *this;} - //@} - - //! \name BINARY OPERATORS - //@{ - //! - PolynomialMod2 And(const PolynomialMod2 &b) const; - //! - PolynomialMod2 Xor(const PolynomialMod2 &b) const; - //! - PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);} - //! - PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);} - //! - PolynomialMod2 Times(const PolynomialMod2 &b) const; - //! - PolynomialMod2 DividedBy(const PolynomialMod2 &b) const; - //! - PolynomialMod2 Modulo(const PolynomialMod2 &b) const; - - //! - PolynomialMod2 operator>>(unsigned int n) const; - //! - PolynomialMod2 operator<<(unsigned int n) const; - //@} - - //! \name OTHER ARITHMETIC FUNCTIONS - //@{ - //! sum modulo 2 of all coefficients - unsigned int Parity() const; - - //! check for irreducibility - bool IsIrreducible() const; - - //! is always zero since we're working modulo 2 - PolynomialMod2 Doubled() const {return Zero();} - //! - PolynomialMod2 Squared() const; - - //! only 1 is a unit - bool IsUnit() const {return Equals(One());} - //! return inverse if *this is a unit, otherwise return 0 - PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();} - - //! greatest common divisor - static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n); - //! calculate multiplicative inverse of *this mod n - PolynomialMod2 InverseMod(const PolynomialMod2 &) const; - - //! calculate r and q such that (a == d*q + r) && (deg(r) < deg(d)) - static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d); - //@} - - //! \name INPUT/OUTPUT - //@{ - //! - friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a); - //@} - -private: - friend class GF2NT; - - SecWordBlock reg; -}; - -//! -inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) -{return a.Equals(b);} -//! -inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) -{return !(a==b);} -//! compares degree -inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) -{return a.Degree() > b.Degree();} -//! compares degree -inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) -{return a.Degree() >= b.Degree();} -//! compares degree -inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) -{return a.Degree() < b.Degree();} -//! compares degree -inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) -{return a.Degree() <= b.Degree();} -//! -inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);} -//! -inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);} -//! -inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);} -//! -inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);} -//! -inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);} -//! -inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);} -//! -inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);} - -// CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations, -// but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003 -CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>; -CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>; -CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>; -CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>; -CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >; - -//! GF(2^n) with Polynomial Basis -class CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> > -{ -public: - GF2NP(const PolynomialMod2 &modulus); - - virtual GF2NP * Clone() const {return new GF2NP(*this);} - virtual void DEREncode(BufferedTransformation &bt) const - {assert(false);} // no ASN.1 syntax yet for general polynomial basis - - void DEREncodeElement(BufferedTransformation &out, const Element &a) const; - void BERDecodeElement(BufferedTransformation &in, Element &a) const; - - bool Equal(const Element &a, const Element &b) const - {assert(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);} - - bool IsUnit(const Element &a) const - {assert(a.Degree() < m_modulus.Degree()); return !!a;} - - unsigned int MaxElementBitLength() const - {return m;} - - unsigned int MaxElementByteLength() const - {return (unsigned int)BitsToBytes(MaxElementBitLength());} - - Element SquareRoot(const Element &a) const; - - Element HalfTrace(const Element &a) const; - - // returns z such that z^2 + z == a - Element SolveQuadraticEquation(const Element &a) const; - -protected: - unsigned int m; -}; - -//! GF(2^n) with Trinomial Basis -class CRYPTOPP_DLL GF2NT : public GF2NP -{ -public: - // polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2 - GF2NT(unsigned int t0, unsigned int t1, unsigned int t2); - - GF2NP * Clone() const {return new GF2NT(*this);} - void DEREncode(BufferedTransformation &bt) const; - - const Element& Multiply(const Element &a, const Element &b) const; - - const Element& Square(const Element &a) const - {return Reduced(a.Squared());} - - const Element& MultiplicativeInverse(const Element &a) const; - -private: - const Element& Reduced(const Element &a) const; - - unsigned int t0, t1; - mutable PolynomialMod2 result; -}; - -//! GF(2^n) with Pentanomial Basis -class CRYPTOPP_DLL GF2NPP : public GF2NP -{ -public: - // polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4 - GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4) - : GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t0(t0), t1(t1), t2(t2), t3(t3) {} - - GF2NP * Clone() const {return new GF2NPP(*this);} - void DEREncode(BufferedTransformation &bt) const; - -private: - unsigned int t0, t1, t2, t3; -}; - -// construct new GF2NP from the ASN.1 sequence Characteristic-two -CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt); - -NAMESPACE_END - -#ifndef __BORLANDC__ -NAMESPACE_BEGIN(std) -template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b) -{ - a.swap(b); -} -NAMESPACE_END -#endif - -#endif |