diff options
author | Tiger Wang <ziwei.tiger@hotmail.co.uk> | 2013-11-27 22:35:13 +0100 |
---|---|---|
committer | Tiger Wang <ziwei.tiger@hotmail.co.uk> | 2013-11-27 22:35:13 +0100 |
commit | a6630d32394120a78af56bc612fa3c3449283248 (patch) | |
tree | 2c791266b0f213cd56961299da8d2258b8f85d8e /lib/cryptopp/gf2n.cpp | |
parent | Fixed spawn point being generally in an ocean (diff) | |
parent | Voronoi-related biomegens use the new cVoronoiMap class. (diff) | |
download | cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.gz cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.bz2 cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.lz cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.xz cuberite-a6630d32394120a78af56bc612fa3c3449283248.tar.zst cuberite-a6630d32394120a78af56bc612fa3c3449283248.zip |
Diffstat (limited to 'lib/cryptopp/gf2n.cpp')
-rw-r--r-- | lib/cryptopp/gf2n.cpp | 882 |
1 files changed, 882 insertions, 0 deletions
diff --git a/lib/cryptopp/gf2n.cpp b/lib/cryptopp/gf2n.cpp new file mode 100644 index 000000000..bcc56071a --- /dev/null +++ b/lib/cryptopp/gf2n.cpp @@ -0,0 +1,882 @@ +// gf2n.cpp - written and placed in the public domain by Wei Dai + +#include "pch.h" + +#ifndef CRYPTOPP_IMPORTS + +#include "gf2n.h" +#include "algebra.h" +#include "words.h" +#include "randpool.h" +#include "asn.h" +#include "oids.h" + +#include <iostream> + +NAMESPACE_BEGIN(CryptoPP) + +PolynomialMod2::PolynomialMod2() +{ +} + +PolynomialMod2::PolynomialMod2(word value, size_t bitLength) + : reg(BitsToWords(bitLength)) +{ + assert(value==0 || reg.size()>0); + + if (reg.size() > 0) + { + reg[0] = value; + SetWords(reg+1, 0, reg.size()-1); + } +} + +PolynomialMod2::PolynomialMod2(const PolynomialMod2& t) + : reg(t.reg.size()) +{ + CopyWords(reg, t.reg, reg.size()); +} + +void PolynomialMod2::Randomize(RandomNumberGenerator &rng, size_t nbits) +{ + const size_t nbytes = nbits/8 + 1; + SecByteBlock buf(nbytes); + rng.GenerateBlock(buf, nbytes); + buf[0] = (byte)Crop(buf[0], nbits % 8); + Decode(buf, nbytes); +} + +PolynomialMod2 PolynomialMod2::AllOnes(size_t bitLength) +{ + PolynomialMod2 result((word)0, bitLength); + SetWords(result.reg, ~(word)0, result.reg.size()); + if (bitLength%WORD_BITS) + result.reg[result.reg.size()-1] = (word)Crop(result.reg[result.reg.size()-1], bitLength%WORD_BITS); + return result; +} + +void PolynomialMod2::SetBit(size_t n, int value) +{ + if (value) + { + reg.CleanGrow(n/WORD_BITS + 1); + reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS)); + } + else + { + if (n/WORD_BITS < reg.size()) + reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS)); + } +} + +byte PolynomialMod2::GetByte(size_t n) const +{ + if (n/WORD_SIZE >= reg.size()) + return 0; + else + return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8)); +} + +void PolynomialMod2::SetByte(size_t n, byte value) +{ + reg.CleanGrow(BytesToWords(n+1)); + reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE)); + reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE)); +} + +PolynomialMod2 PolynomialMod2::Monomial(size_t i) +{ + PolynomialMod2 r((word)0, i+1); + r.SetBit(i); + return r; +} + +PolynomialMod2 PolynomialMod2::Trinomial(size_t t0, size_t t1, size_t t2) +{ + PolynomialMod2 r((word)0, t0+1); + r.SetBit(t0); + r.SetBit(t1); + r.SetBit(t2); + return r; +} + +PolynomialMod2 PolynomialMod2::Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4) +{ + PolynomialMod2 r((word)0, t0+1); + r.SetBit(t0); + r.SetBit(t1); + r.SetBit(t2); + r.SetBit(t3); + r.SetBit(t4); + return r; +} + +template <word i> +struct NewPolynomialMod2 +{ + PolynomialMod2 * operator()() const + { + return new PolynomialMod2(i); + } +}; + +const PolynomialMod2 &PolynomialMod2::Zero() +{ + return Singleton<PolynomialMod2>().Ref(); +} + +const PolynomialMod2 &PolynomialMod2::One() +{ + return Singleton<PolynomialMod2, NewPolynomialMod2<1> >().Ref(); +} + +void PolynomialMod2::Decode(const byte *input, size_t inputLen) +{ + StringStore store(input, inputLen); + Decode(store, inputLen); +} + +void PolynomialMod2::Encode(byte *output, size_t outputLen) const +{ + ArraySink sink(output, outputLen); + Encode(sink, outputLen); +} + +void PolynomialMod2::Decode(BufferedTransformation &bt, size_t inputLen) +{ + reg.CleanNew(BytesToWords(inputLen)); + + for (size_t i=inputLen; i > 0; i--) + { + byte b; + bt.Get(b); + reg[(i-1)/WORD_SIZE] |= word(b) << ((i-1)%WORD_SIZE)*8; + } +} + +void PolynomialMod2::Encode(BufferedTransformation &bt, size_t outputLen) const +{ + for (size_t i=outputLen; i > 0; i--) + bt.Put(GetByte(i-1)); +} + +void PolynomialMod2::DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const +{ + DERGeneralEncoder enc(bt, OCTET_STRING); + Encode(enc, length); + enc.MessageEnd(); +} + +void PolynomialMod2::BERDecodeAsOctetString(BufferedTransformation &bt, size_t length) +{ + BERGeneralDecoder dec(bt, OCTET_STRING); + if (!dec.IsDefiniteLength() || dec.RemainingLength() != length) + BERDecodeError(); + Decode(dec, length); + dec.MessageEnd(); +} + +unsigned int PolynomialMod2::WordCount() const +{ + return (unsigned int)CountWords(reg, reg.size()); +} + +unsigned int PolynomialMod2::ByteCount() const +{ + unsigned wordCount = WordCount(); + if (wordCount) + return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]); + else + return 0; +} + +unsigned int PolynomialMod2::BitCount() const +{ + unsigned wordCount = WordCount(); + if (wordCount) + return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]); + else + return 0; +} + +unsigned int PolynomialMod2::Parity() const +{ + unsigned i; + word temp=0; + for (i=0; i<reg.size(); i++) + temp ^= reg[i]; + return CryptoPP::Parity(temp); +} + +PolynomialMod2& PolynomialMod2::operator=(const PolynomialMod2& t) +{ + reg.Assign(t.reg); + return *this; +} + +PolynomialMod2& PolynomialMod2::operator^=(const PolynomialMod2& t) +{ + reg.CleanGrow(t.reg.size()); + XorWords(reg, t.reg, t.reg.size()); + return *this; +} + +PolynomialMod2 PolynomialMod2::Xor(const PolynomialMod2 &b) const +{ + if (b.reg.size() >= reg.size()) + { + PolynomialMod2 result((word)0, b.reg.size()*WORD_BITS); + XorWords(result.reg, reg, b.reg, reg.size()); + CopyWords(result.reg+reg.size(), b.reg+reg.size(), b.reg.size()-reg.size()); + return result; + } + else + { + PolynomialMod2 result((word)0, reg.size()*WORD_BITS); + XorWords(result.reg, reg, b.reg, b.reg.size()); + CopyWords(result.reg+b.reg.size(), reg+b.reg.size(), reg.size()-b.reg.size()); + return result; + } +} + +PolynomialMod2 PolynomialMod2::And(const PolynomialMod2 &b) const +{ + PolynomialMod2 result((word)0, WORD_BITS*STDMIN(reg.size(), b.reg.size())); + AndWords(result.reg, reg, b.reg, result.reg.size()); + return result; +} + +PolynomialMod2 PolynomialMod2::Times(const PolynomialMod2 &b) const +{ + PolynomialMod2 result((word)0, BitCount() + b.BitCount()); + + for (int i=b.Degree(); i>=0; i--) + { + result <<= 1; + if (b[i]) + XorWords(result.reg, reg, reg.size()); + } + return result; +} + +PolynomialMod2 PolynomialMod2::Squared() const +{ + static const word map[16] = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85}; + + PolynomialMod2 result((word)0, 2*reg.size()*WORD_BITS); + + for (unsigned i=0; i<reg.size(); i++) + { + unsigned j; + + for (j=0; j<WORD_BITS; j+=8) + result.reg[2*i] |= map[(reg[i] >> (j/2)) % 16] << j; + + for (j=0; j<WORD_BITS; j+=8) + result.reg[2*i+1] |= map[(reg[i] >> (j/2 + WORD_BITS/2)) % 16] << j; + } + + return result; +} + +void PolynomialMod2::Divide(PolynomialMod2 &remainder, PolynomialMod2 "ient, + const PolynomialMod2 ÷nd, const PolynomialMod2 &divisor) +{ + if (!divisor) + throw PolynomialMod2::DivideByZero(); + + int degree = divisor.Degree(); + remainder.reg.CleanNew(BitsToWords(degree+1)); + if (dividend.BitCount() >= divisor.BitCount()) + quotient.reg.CleanNew(BitsToWords(dividend.BitCount() - divisor.BitCount() + 1)); + else + quotient.reg.CleanNew(0); + + for (int i=dividend.Degree(); i>=0; i--) + { + remainder <<= 1; + remainder.reg[0] |= dividend[i]; + if (remainder[degree]) + { + remainder -= divisor; + quotient.SetBit(i); + } + } +} + +PolynomialMod2 PolynomialMod2::DividedBy(const PolynomialMod2 &b) const +{ + PolynomialMod2 remainder, quotient; + PolynomialMod2::Divide(remainder, quotient, *this, b); + return quotient; +} + +PolynomialMod2 PolynomialMod2::Modulo(const PolynomialMod2 &b) const +{ + PolynomialMod2 remainder, quotient; + PolynomialMod2::Divide(remainder, quotient, *this, b); + return remainder; +} + +PolynomialMod2& PolynomialMod2::operator<<=(unsigned int n) +{ + if (!reg.size()) + return *this; + + int i; + word u; + word carry=0; + word *r=reg; + + if (n==1) // special case code for most frequent case + { + i = (int)reg.size(); + while (i--) + { + u = *r; + *r = (u << 1) | carry; + carry = u >> (WORD_BITS-1); + r++; + } + + if (carry) + { + reg.Grow(reg.size()+1); + reg[reg.size()-1] = carry; + } + + return *this; + } + + int shiftWords = n / WORD_BITS; + int shiftBits = n % WORD_BITS; + + if (shiftBits) + { + i = (int)reg.size(); + while (i--) + { + u = *r; + *r = (u << shiftBits) | carry; + carry = u >> (WORD_BITS-shiftBits); + r++; + } + } + + if (carry) + { + reg.Grow(reg.size()+shiftWords+1); + reg[reg.size()-1] = carry; + } + else + reg.Grow(reg.size()+shiftWords); + + if (shiftWords) + { + for (i = (int)reg.size()-1; i>=shiftWords; i--) + reg[i] = reg[i-shiftWords]; + for (; i>=0; i--) + reg[i] = 0; + } + + return *this; +} + +PolynomialMod2& PolynomialMod2::operator>>=(unsigned int n) +{ + if (!reg.size()) + return *this; + + int shiftWords = n / WORD_BITS; + int shiftBits = n % WORD_BITS; + + size_t i; + word u; + word carry=0; + word *r=reg+reg.size()-1; + + if (shiftBits) + { + i = reg.size(); + while (i--) + { + u = *r; + *r = (u >> shiftBits) | carry; + carry = u << (WORD_BITS-shiftBits); + r--; + } + } + + if (shiftWords) + { + for (i=0; i<reg.size()-shiftWords; i++) + reg[i] = reg[i+shiftWords]; + for (; i<reg.size(); i++) + reg[i] = 0; + } + + return *this; +} + +PolynomialMod2 PolynomialMod2::operator<<(unsigned int n) const +{ + PolynomialMod2 result(*this); + return result<<=n; +} + +PolynomialMod2 PolynomialMod2::operator>>(unsigned int n) const +{ + PolynomialMod2 result(*this); + return result>>=n; +} + +bool PolynomialMod2::operator!() const +{ + for (unsigned i=0; i<reg.size(); i++) + if (reg[i]) return false; + return true; +} + +bool PolynomialMod2::Equals(const PolynomialMod2 &rhs) const +{ + size_t i, smallerSize = STDMIN(reg.size(), rhs.reg.size()); + + for (i=0; i<smallerSize; i++) + if (reg[i] != rhs.reg[i]) return false; + + for (i=smallerSize; i<reg.size(); i++) + if (reg[i] != 0) return false; + + for (i=smallerSize; i<rhs.reg.size(); i++) + if (rhs.reg[i] != 0) return false; + + return true; +} + +std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a) +{ + // Get relevant conversion specifications from ostream. + long f = out.flags() & std::ios::basefield; // Get base digits. + int bits, block; + char suffix; + switch(f) + { + case std::ios::oct : + bits = 3; + block = 4; + suffix = 'o'; + break; + case std::ios::hex : + bits = 4; + block = 2; + suffix = 'h'; + break; + default : + bits = 1; + block = 8; + suffix = 'b'; + } + + if (!a) + return out << '0' << suffix; + + SecBlock<char> s(a.BitCount()/bits+1); + unsigned i; + + static const char upper[]="0123456789ABCDEF"; + static const char lower[]="0123456789abcdef"; + const char* vec = (out.flags() & std::ios::uppercase) ? upper : lower; + + for (i=0; i*bits < a.BitCount(); i++) + { + int digit=0; + for (int j=0; j<bits; j++) + digit |= a[i*bits+j] << j; + s[i]=vec[digit]; + } + + while (i--) + { + out << s[i]; + if (i && (i%block)==0) + out << ','; + } + + return out << suffix; +} + +PolynomialMod2 PolynomialMod2::Gcd(const PolynomialMod2 &a, const PolynomialMod2 &b) +{ + return EuclideanDomainOf<PolynomialMod2>().Gcd(a, b); +} + +PolynomialMod2 PolynomialMod2::InverseMod(const PolynomialMod2 &modulus) const +{ + typedef EuclideanDomainOf<PolynomialMod2> Domain; + return QuotientRing<Domain>(Domain(), modulus).MultiplicativeInverse(*this); +} + +bool PolynomialMod2::IsIrreducible() const +{ + signed int d = Degree(); + if (d <= 0) + return false; + + PolynomialMod2 t(2), u(t); + for (int i=1; i<=d/2; i++) + { + u = u.Squared()%(*this); + if (!Gcd(u+t, *this).IsUnit()) + return false; + } + return true; +} + +// ******************************************************** + +GF2NP::GF2NP(const PolynomialMod2 &modulus) + : QuotientRing<EuclideanDomainOf<PolynomialMod2> >(EuclideanDomainOf<PolynomialMod2>(), modulus), m(modulus.Degree()) +{ +} + +GF2NP::Element GF2NP::SquareRoot(const Element &a) const +{ + Element r = a; + for (unsigned int i=1; i<m; i++) + r = Square(r); + return r; +} + +GF2NP::Element GF2NP::HalfTrace(const Element &a) const +{ + assert(m%2 == 1); + Element h = a; + for (unsigned int i=1; i<=(m-1)/2; i++) + h = Add(Square(Square(h)), a); + return h; +} + +GF2NP::Element GF2NP::SolveQuadraticEquation(const Element &a) const +{ + if (m%2 == 0) + { + Element z, w; + RandomPool rng; + do + { + Element p((RandomNumberGenerator &)rng, m); + z = PolynomialMod2::Zero(); + w = p; + for (unsigned int i=1; i<=m-1; i++) + { + w = Square(w); + z = Square(z); + Accumulate(z, Multiply(w, a)); + Accumulate(w, p); + } + } while (w.IsZero()); + return z; + } + else + return HalfTrace(a); +} + +// ******************************************************** + +GF2NT::GF2NT(unsigned int t0, unsigned int t1, unsigned int t2) + : GF2NP(PolynomialMod2::Trinomial(t0, t1, t2)) + , t0(t0), t1(t1) + , result((word)0, m) +{ + assert(t0 > t1 && t1 > t2 && t2==0); +} + +const GF2NT::Element& GF2NT::MultiplicativeInverse(const Element &a) const +{ + if (t0-t1 < WORD_BITS) + return GF2NP::MultiplicativeInverse(a); + + SecWordBlock T(m_modulus.reg.size() * 4); + word *b = T; + word *c = T+m_modulus.reg.size(); + word *f = T+2*m_modulus.reg.size(); + word *g = T+3*m_modulus.reg.size(); + size_t bcLen=1, fgLen=m_modulus.reg.size(); + unsigned int k=0; + + SetWords(T, 0, 3*m_modulus.reg.size()); + b[0]=1; + assert(a.reg.size() <= m_modulus.reg.size()); + CopyWords(f, a.reg, a.reg.size()); + CopyWords(g, m_modulus.reg, m_modulus.reg.size()); + + while (1) + { + word t=f[0]; + while (!t) + { + ShiftWordsRightByWords(f, fgLen, 1); + if (c[bcLen-1]) + bcLen++; + assert(bcLen <= m_modulus.reg.size()); + ShiftWordsLeftByWords(c, bcLen, 1); + k+=WORD_BITS; + t=f[0]; + } + + unsigned int i=0; + while (t%2 == 0) + { + t>>=1; + i++; + } + k+=i; + + if (t==1 && CountWords(f, fgLen)==1) + break; + + if (i==1) + { + ShiftWordsRightByBits(f, fgLen, 1); + t=ShiftWordsLeftByBits(c, bcLen, 1); + } + else + { + ShiftWordsRightByBits(f, fgLen, i); + t=ShiftWordsLeftByBits(c, bcLen, i); + } + if (t) + { + c[bcLen] = t; + bcLen++; + assert(bcLen <= m_modulus.reg.size()); + } + + if (f[fgLen-1]==0 && g[fgLen-1]==0) + fgLen--; + + if (f[fgLen-1] < g[fgLen-1]) + { + std::swap(f, g); + std::swap(b, c); + } + + XorWords(f, g, fgLen); + XorWords(b, c, bcLen); + } + + while (k >= WORD_BITS) + { + word temp = b[0]; + // right shift b + for (unsigned i=0; i+1<BitsToWords(m); i++) + b[i] = b[i+1]; + b[BitsToWords(m)-1] = 0; + + if (t1 < WORD_BITS) + for (unsigned int j=0; j<WORD_BITS-t1; j++) + temp ^= ((temp >> j) & 1) << (t1 + j); + else + b[t1/WORD_BITS-1] ^= temp << t1%WORD_BITS; + + if (t1 % WORD_BITS) + b[t1/WORD_BITS] ^= temp >> (WORD_BITS - t1%WORD_BITS); + + if (t0%WORD_BITS) + { + b[t0/WORD_BITS-1] ^= temp << t0%WORD_BITS; + b[t0/WORD_BITS] ^= temp >> (WORD_BITS - t0%WORD_BITS); + } + else + b[t0/WORD_BITS-1] ^= temp; + + k -= WORD_BITS; + } + + if (k) + { + word temp = b[0] << (WORD_BITS - k); + ShiftWordsRightByBits(b, BitsToWords(m), k); + + if (t1 < WORD_BITS) + for (unsigned int j=0; j<WORD_BITS-t1; j++) + temp ^= ((temp >> j) & 1) << (t1 + j); + else + b[t1/WORD_BITS-1] ^= temp << t1%WORD_BITS; + + if (t1 % WORD_BITS) + b[t1/WORD_BITS] ^= temp >> (WORD_BITS - t1%WORD_BITS); + + if (t0%WORD_BITS) + { + b[t0/WORD_BITS-1] ^= temp << t0%WORD_BITS; + b[t0/WORD_BITS] ^= temp >> (WORD_BITS - t0%WORD_BITS); + } + else + b[t0/WORD_BITS-1] ^= temp; + } + + CopyWords(result.reg.begin(), b, result.reg.size()); + return result; +} + +const GF2NT::Element& GF2NT::Multiply(const Element &a, const Element &b) const +{ + size_t aSize = STDMIN(a.reg.size(), result.reg.size()); + Element r((word)0, m); + + for (int i=m-1; i>=0; i--) + { + if (r[m-1]) + { + ShiftWordsLeftByBits(r.reg.begin(), r.reg.size(), 1); + XorWords(r.reg.begin(), m_modulus.reg, r.reg.size()); + } + else + ShiftWordsLeftByBits(r.reg.begin(), r.reg.size(), 1); + + if (b[i]) + XorWords(r.reg.begin(), a.reg, aSize); + } + + if (m%WORD_BITS) + r.reg.begin()[r.reg.size()-1] = (word)Crop(r.reg[r.reg.size()-1], m%WORD_BITS); + + CopyWords(result.reg.begin(), r.reg.begin(), result.reg.size()); + return result; +} + +const GF2NT::Element& GF2NT::Reduced(const Element &a) const +{ + if (t0-t1 < WORD_BITS) + return m_domain.Mod(a, m_modulus); + + SecWordBlock b(a.reg); + + size_t i; + for (i=b.size()-1; i>=BitsToWords(t0); i--) + { + word temp = b[i]; + + if (t0%WORD_BITS) + { + b[i-t0/WORD_BITS] ^= temp >> t0%WORD_BITS; + b[i-t0/WORD_BITS-1] ^= temp << (WORD_BITS - t0%WORD_BITS); + } + else + b[i-t0/WORD_BITS] ^= temp; + + if ((t0-t1)%WORD_BITS) + { + b[i-(t0-t1)/WORD_BITS] ^= temp >> (t0-t1)%WORD_BITS; + b[i-(t0-t1)/WORD_BITS-1] ^= temp << (WORD_BITS - (t0-t1)%WORD_BITS); + } + else + b[i-(t0-t1)/WORD_BITS] ^= temp; + } + + if (i==BitsToWords(t0)-1 && t0%WORD_BITS) + { + word mask = ((word)1<<(t0%WORD_BITS))-1; + word temp = b[i] & ~mask; + b[i] &= mask; + + b[i-t0/WORD_BITS] ^= temp >> t0%WORD_BITS; + + if ((t0-t1)%WORD_BITS) + { + b[i-(t0-t1)/WORD_BITS] ^= temp >> (t0-t1)%WORD_BITS; + if ((t0-t1)%WORD_BITS > t0%WORD_BITS) + b[i-(t0-t1)/WORD_BITS-1] ^= temp << (WORD_BITS - (t0-t1)%WORD_BITS); + else + assert(temp << (WORD_BITS - (t0-t1)%WORD_BITS) == 0); + } + else + b[i-(t0-t1)/WORD_BITS] ^= temp; + } + + SetWords(result.reg.begin(), 0, result.reg.size()); + CopyWords(result.reg.begin(), b, STDMIN(b.size(), result.reg.size())); + return result; +} + +void GF2NP::DEREncodeElement(BufferedTransformation &out, const Element &a) const +{ + a.DEREncodeAsOctetString(out, MaxElementByteLength()); +} + +void GF2NP::BERDecodeElement(BufferedTransformation &in, Element &a) const +{ + a.BERDecodeAsOctetString(in, MaxElementByteLength()); +} + +void GF2NT::DEREncode(BufferedTransformation &bt) const +{ + DERSequenceEncoder seq(bt); + ASN1::characteristic_two_field().DEREncode(seq); + DERSequenceEncoder parameters(seq); + DEREncodeUnsigned(parameters, m); + ASN1::tpBasis().DEREncode(parameters); + DEREncodeUnsigned(parameters, t1); + parameters.MessageEnd(); + seq.MessageEnd(); +} + +void GF2NPP::DEREncode(BufferedTransformation &bt) const +{ + DERSequenceEncoder seq(bt); + ASN1::characteristic_two_field().DEREncode(seq); + DERSequenceEncoder parameters(seq); + DEREncodeUnsigned(parameters, m); + ASN1::ppBasis().DEREncode(parameters); + DERSequenceEncoder pentanomial(parameters); + DEREncodeUnsigned(pentanomial, t3); + DEREncodeUnsigned(pentanomial, t2); + DEREncodeUnsigned(pentanomial, t1); + pentanomial.MessageEnd(); + parameters.MessageEnd(); + seq.MessageEnd(); +} + +GF2NP * BERDecodeGF2NP(BufferedTransformation &bt) +{ + // VC60 workaround: auto_ptr lacks reset() + member_ptr<GF2NP> result; + + BERSequenceDecoder seq(bt); + if (OID(seq) != ASN1::characteristic_two_field()) + BERDecodeError(); + BERSequenceDecoder parameters(seq); + unsigned int m; + BERDecodeUnsigned(parameters, m); + OID oid(parameters); + if (oid == ASN1::tpBasis()) + { + unsigned int t1; + BERDecodeUnsigned(parameters, t1); + result.reset(new GF2NT(m, t1, 0)); + } + else if (oid == ASN1::ppBasis()) + { + unsigned int t1, t2, t3; + BERSequenceDecoder pentanomial(parameters); + BERDecodeUnsigned(pentanomial, t3); + BERDecodeUnsigned(pentanomial, t2); + BERDecodeUnsigned(pentanomial, t1); + pentanomial.MessageEnd(); + result.reset(new GF2NPP(m, t3, t2, t1, 0)); + } + else + { + BERDecodeError(); + return NULL; + } + parameters.MessageEnd(); + seq.MessageEnd(); + + return result.release(); +} + +NAMESPACE_END + +#endif |