#pragma once
#define _USE_MATH_DEFINES // Enable non-standard math defines (MSVC)
#include <math.h>
template <typename T>
// tolua_begin
class Vector3
{
TOLUA_TEMPLATE_BIND((T, int, float, double))
public:
T x, y, z;
inline Vector3(void) : x(0), y(0), z(0) {}
inline Vector3(T a_x, T a_y, T a_z) : x(a_x), y(a_y), z(a_z) {}
// Hardcoded copy constructors (tolua++ does not support function templates .. yet)
Vector3(const Vector3<float> & a_Rhs) : x((T) a_Rhs.x), y((T) a_Rhs.y), z((T) a_Rhs.z) {}
Vector3(const Vector3<double> & a_Rhs) : x((T) a_Rhs.x), y((T) a_Rhs.y), z((T) a_Rhs.z) {}
Vector3(const Vector3<int> & a_Rhs) : x((T) a_Rhs.x), y((T) a_Rhs.y), z((T) a_Rhs.z) {}
// tolua_end
template <typename _T>
Vector3(const Vector3<_T> & a_Rhs) : x(a_Rhs.x), y(a_Rhs.y), z(a_Rhs.z) {}
template <typename _T>
Vector3(const Vector3<_T> * a_Rhs) : x(a_Rhs->x), y(a_Rhs->y), z(a_Rhs->z) {}
// tolua_begin
inline void Set(T a_x, T a_y, T a_z)
{
x = a_x;
y = a_y;
z = a_z;
}
inline void Normalize(void)
{
double Len = 1.0 / Length();
x = (T)(x * Len);
y = (T)(y * Len);
z = (T)(z * Len);
}
inline Vector3<T> NormalizeCopy(void) const
{
double Len = 1.0 / Length();
return Vector3<T>(
(T)(x * Len),
(T)(y * Len),
(T)(z * Len)
);
}
inline void NormalizeCopy(Vector3<T> & a_Rhs) const
{
double Len = 1.0 / Length();
a_Rhs.Set(
(T)(x * Len),
(T)(y * Len),
(T)(z * Len)
);
}
inline double Length(void) const
{
return sqrt((double)(x * x + y * y + z * z));
}
inline double SqrLength(void) const
{
return x * x + y * y + z * z;
}
inline T Dot(const Vector3<T> & a_Rhs) const
{
return x * a_Rhs.x + y * a_Rhs.y + z * a_Rhs.z;
}
inline Vector3<T> Cross(const Vector3<T> & a_Rhs) const
{
return Vector3<T>(
y * a_Rhs.z - z * a_Rhs.y,
z * a_Rhs.x - x * a_Rhs.z,
x * a_Rhs.y - y * a_Rhs.x
);
}
inline bool Equals(const Vector3<T> & a_Rhs) const
{
return x == a_Rhs.x && y == a_Rhs.y && z == a_Rhs.z;
}
inline bool operator == (const Vector3<T> & a_Rhs) const
{
return Equals(a_Rhs);
}
inline bool operator < (const Vector3<T> & a_Rhs)
{
// return (x < a_Rhs.x) && (y < a_Rhs.y) && (z < a_Rhs.z); ?
return (x < a_Rhs.x) || (x == a_Rhs.x && y < a_Rhs.y) || (x == a_Rhs.x && y == a_Rhs.y && z < a_Rhs.z);
}
inline void Move(T a_X, T a_Y, T a_Z)
{
x += a_X;
y += a_Y;
z += a_Z;
}
inline void Move(const Vector3<T> & a_Diff)
{
x += a_Diff.x;
y += a_Diff.y;
z += a_Diff.z;
}
// tolua_end
inline void operator += (const Vector3<T> & a_Rhs)
{
x += a_Rhs.x;
y += a_Rhs.y;
z += a_Rhs.z;
}
inline void operator -= (const Vector3<T> & a_Rhs)
{
x -= a_Rhs.x;
y -= a_Rhs.y;
z -= a_Rhs.z;
}
inline void operator *= (const Vector3<T> & a_Rhs)
{
x *= a_Rhs.x;
y *= a_Rhs.y;
z *= a_Rhs.z;
}
inline void operator *= (T a_v)
{
x *= a_v;
y *= a_v;
z *= a_v;
}
// tolua_begin
inline Vector3<T> operator + (const Vector3<T>& a_Rhs) const
{
return Vector3<T>(
x + a_Rhs.x,
y + a_Rhs.y,
z + a_Rhs.z
);
}
inline Vector3<T> operator - (const Vector3<T>& a_Rhs) const
{
return Vector3<T>(
x - a_Rhs.x,
y - a_Rhs.y,
z - a_Rhs.z
);
}
inline Vector3<T> operator * (const Vector3<T>& a_Rhs) const
{
return Vector3<T>(
x * a_Rhs.x,
y * a_Rhs.y,
z * a_Rhs.z
);
}
inline Vector3<T> operator * (T a_v) const
{
return Vector3<T>(
x * a_v,
y * a_v,
z * a_v
);
}
inline Vector3<T> operator / (T a_v) const
{
return Vector3<T>(
x / a_v,
y / a_v,
z / a_v
);
}
/** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified Z coord.
The result satisfies the following equation:
(*this + Result * (a_OtherEnd - *this)).z = a_Z
If the line is too close to being parallel, this function returns NO_INTERSECTION
*/
inline double LineCoeffToXYPlane(const Vector3<T> & a_OtherEnd, T a_Z) const
{
if (abs(z - a_OtherEnd.z) < EPS)
{
return NO_INTERSECTION;
}
return (a_Z - z) / (a_OtherEnd.z - z);
}
/** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified Y coord.
The result satisfies the following equation:
(*this + Result * (a_OtherEnd - *this)).y = a_Y
If the line is too close to being parallel, this function returns NO_INTERSECTION
*/
inline double LineCoeffToXZPlane(const Vector3<T> & a_OtherEnd, T a_Y) const
{
if (abs(y - a_OtherEnd.y) < EPS)
{
return NO_INTERSECTION;
}
return (a_Y - y) / (a_OtherEnd.y - y);
}
/** Returns the coefficient for the (a_OtherEnd - this) line to reach the specified X coord.
The result satisfies the following equation:
(*this + Result * (a_OtherEnd - *this)).x = a_X
If the line is too close to being parallel, this function returns NO_INTERSECTION
*/
inline double LineCoeffToYZPlane(const Vector3<T> & a_OtherEnd, T a_X) const
{
if (abs(x - a_OtherEnd.x) < EPS)
{
return NO_INTERSECTION;
}
return (a_X - x) / (a_OtherEnd.x - x);
}
/** The max difference between two coords for which the coords are assumed equal. */
static const double EPS;
/** Return value of LineCoeffToPlane() if the line is parallel to the plane. */
static const double NO_INTERSECTION;
};
// tolua_end
template <typename T>
const double Vector3<T>::EPS = 0.000001;
template <typename T>
const double Vector3<T>::NO_INTERSECTION = 1e70;
// tolua_begin
typedef Vector3<double> Vector3d;
typedef Vector3<float> Vector3f;
typedef Vector3<int> Vector3i;
// tolua_end
typedef std::list<Vector3i> cVector3iList;
typedef std::vector<Vector3i> cVector3iArray;