#pragma once
#define CHUNK_SECTION_HEIGHT 16
#define CHUNK_SECTION_NUM (256 / CHUNK_SECTION_HEIGHT)
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
#else
// unique_ptr style interface for memory management
#endif
class cChunkBuffer
{
public:
cChunkBuffer()
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
: IsOwner(true)
#endif
{
memset(m_Sections, 0, sizeof(m_Sections));
}
~cChunkBuffer()
{
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
if(!IsOwner) return;
#endif
for (int i = 0; i < CHUNK_SECTION_NUM; i++)
{
if(m_Sections[i]) Free(m_Sections[i]);;
}
}
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
cChunkBuffer(const cChunkBuffer& other) :
IsOwner(true)
{
for (int i = 0; i < CHUNK_SECTION_NUM; i++)
{
m_Sections[i] = other.m_Sections[i];
}
other.IsOwner = false;
}
void operator=(const cChunkBuffer& other)
{
if(IsOwner)
{
for (int i = 0; i < CHUNK_SECTION_NUM; i++)
{
if(m_Sections[i]) Free(m_Sections[i]);;
}
}
IsOwner = true;
for (int i = 0; i < CHUNK_SECTION_NUM; i++)
{
m_Sections[i] = other.m_Sections[i];
}
other.IsOwner = false;
}
#else
// unique_ptr style interface for memory management
cChunkBuffer(const cChunkBuffer&& other)
{
for (int i = 0; i < CHUNK_SECTION_NUM; i++)
{
m_Sections[i] = other.m_Sections[i];
}
}
void operator=(const cChunkBuffer&& other)
{
for (int i = 0; i < CHUNK_SECTION_NUM; i++)
{
if(m_Sections[i]) Free(m_Sections[i]);;
m_Sections[i] = other.m_Sections[i];
}
}
#endif
BLOCKTYPE GetBlock(int a_X, int a_Y, int a_Z) const
{
ASSERT((a_X >= 0) && (a_X < cChunkDef::Width));
ASSERT((a_Y >= 0) && (a_Y < cChunkDef::Height));
ASSERT((a_Z >= 0) && (a_Z < cChunkDef::Width));
int Section = a_Y / CHUNK_SECTION_HEIGHT;
if(m_Sections[Section])
{
int Index = cChunkDef::MakeIndexNoCheck(a_X, a_Y - (Section * CHUNK_SECTION_HEIGHT), a_Z);
return m_Sections[Section]->m_BlockTypes[Index];
}
else
{
return 0;
}
}
void SetBlock(int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE a_Block)
{
if (
(a_RelX >= cChunkDef::Width) || (a_RelX < 0) ||
(a_RelY >= cChunkDef::Height) || (a_RelY < 0) ||
(a_RelZ >= cChunkDef::Width) || (a_RelZ < 0)
)
{
ASSERT(!"cChunkBuffer::SetMeta(): index out of range!");
return;
}
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if(!m_Sections[Section])
{
m_Sections[Section] = Allocate();
if(!m_Sections[Section])
{
ASSERT("Failed to allocate a new section in Chunkbuffer");
return;
}
}
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
m_Sections[Section]->m_BlockTypes[Index] = a_Block;
}
NIBBLETYPE GetMeta(int a_RelX, int a_RelY, int a_RelZ) const
{
if ((a_RelX < cChunkDef::Width) && (a_RelX > -1) && (a_RelY < cChunkDef::Height) && (a_RelY > -1) && (a_RelZ < cChunkDef::Width) && (a_RelZ > -1))
{
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if(m_Sections[Section])
{
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
return (m_Sections[Section]->m_BlockMeta[Index / 2] >> ((Index & 1) * 4)) & 0x0f;
}
else
{
return 0;
}
}
ASSERT(!"cChunkBuffer::GetMeta(): coords out of chunk range!");
return 0;
}
void SetMeta(int a_RelX, int a_RelY, int a_RelZ, NIBBLETYPE a_Nibble)
{
if (
(a_RelX >= cChunkDef::Width) || (a_RelX < 0) ||
(a_RelY >= cChunkDef::Height) || (a_RelY < 0) ||
(a_RelZ >= cChunkDef::Width) || (a_RelZ < 0)
)
{
ASSERT(!"cChunkBuffer::SetMeta(): index out of range!");
return;
}
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if(!m_Sections[Section])
{
m_Sections[Section] = Allocate();
if(!m_Sections[Section])
{
ASSERT("Failed to allocate a new section in Chunkbuffer");
return;
}
}
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
m_Sections[Section]->m_BlockMeta[Index / 2] = static_cast<NIBBLETYPE>(
(m_Sections[Section]->m_BlockMeta[Index / 2] & (0xf0 >> ((Index & 1) * 4))) | // The untouched nibble
((a_Nibble & 0x0f) << ((Index & 1) * 4)) // The nibble being set
);
}
NIBBLETYPE GetBlockLight(int a_RelX, int a_RelY, int a_RelZ) const
{
if ((a_RelX < cChunkDef::Width) && (a_RelX > -1) && (a_RelY < cChunkDef::Height) && (a_RelY > -1) && (a_RelZ < cChunkDef::Width) && (a_RelZ > -1))
{
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if(m_Sections[Section])
{
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
return (m_Sections[Section]->m_BlockLight[Index / 2] >> ((Index & 1) * 4)) & 0x0f;
}
else
{
return 0;
}
}
ASSERT(!"cChunkBuffer::GetMeta(): coords out of chunk range!");
return 0;
}
NIBBLETYPE GetSkyLight(int a_RelX, int a_RelY, int a_RelZ) const
{
if ((a_RelX < cChunkDef::Width) && (a_RelX > -1) && (a_RelY < cChunkDef::Height) && (a_RelY > -1) && (a_RelZ < cChunkDef::Width) && (a_RelZ > -1))
{
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if(m_Sections[Section])
{
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
return (m_Sections[Section]->m_BlockLight[Index / 2] >> ((Index & 1) * 4)) & 0x0f;
}
else
{
return 0xFF;
}
}
ASSERT(!"cChunkBuffer::GetMeta(): coords out of chunk range!");
return 0;
}
cChunkBuffer Copy() const;
void CopyBlocks (BLOCKTYPE * a_dest, size_t a_Idx = 0, size_t length = cChunkDef::NumBlocks) const;
void CopyMeta (NIBBLETYPE * a_dest) const;
void CopyLight (NIBBLETYPE * a_dest) const;
void CopySkyLight (NIBBLETYPE * a_dest) const;
void SetBlocks (const BLOCKTYPE * a_src);
void SetMeta (const NIBBLETYPE * a_src);
void SetLight (const NIBBLETYPE * a_src);
void SetSkyLight (const NIBBLETYPE * a_src);
private:
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
mutable bool IsOwner;
#endif
struct sChunkSection {
BLOCKTYPE m_BlockTypes [CHUNK_SECTION_HEIGHT * 16 * 16] ;
NIBBLETYPE m_BlockMeta [CHUNK_SECTION_HEIGHT * 16 * 16 / 2];
NIBBLETYPE m_BlockLight [CHUNK_SECTION_HEIGHT * 16 * 16 / 2];
NIBBLETYPE m_BlockSkyLight[CHUNK_SECTION_HEIGHT * 16 * 16 / 2];
};
sChunkSection *m_Sections[CHUNK_SECTION_NUM];
sChunkSection * Allocate() const;
void Free(sChunkSection * ptr) const;
};
/** A simple implementation of the cChunkDataCallback interface that collects all block data into a buffer
*/
class cChunkBufferCollector :
public cChunkDataCallback
{
public:
cChunkBuffer m_BlockData;
protected:
virtual void ChunkBuffer(const cChunkBuffer & a_BlockData) override
{
m_BlockData = a_BlockData.Copy();
}
};
/** A simple implementation of the cChunkDataCallback interface that collects all block data into a single buffer
*/
class cChunkDataCollector :
public cChunkDataCallback
{
public:
// Must be unsigned char instead of BLOCKTYPE or NIBBLETYPE, because it houses both.
unsigned char m_BlockData[cChunkDef::BlockDataSize];
protected:
virtual void ChunkBuffer(const cChunkBuffer & a_ChunkBuffer) override
{
a_ChunkBuffer.CopyBlocks(m_BlockData);
a_ChunkBuffer.CopyMeta(m_BlockData + cChunkDef::NumBlocks);
a_ChunkBuffer.CopyLight(m_BlockData + 3 * cChunkDef::NumBlocks / 2);
a_ChunkBuffer.CopySkyLight(m_BlockData + 2 * cChunkDef::NumBlocks);
}
};
/** A simple implementation of the cChunkDataCallback interface that collects all block data into a separate buffers
*/
class cChunkDataSeparateCollector :
public cChunkDataCallback
{
public:
cChunkDef::BlockTypes m_BlockTypes;
cChunkDef::BlockNibbles m_BlockMetas;
cChunkDef::BlockNibbles m_BlockLight;
cChunkDef::BlockNibbles m_BlockSkyLight;
protected:
virtual void ChunkBuffer(const cChunkBuffer & a_ChunkBuffer) override
{
a_ChunkBuffer.CopyBlocks(m_BlockTypes);
a_ChunkBuffer.CopyMeta(m_BlockMetas);
a_ChunkBuffer.CopyLight(m_BlockLight);
a_ChunkBuffer.CopySkyLight(m_BlockSkyLight);
}
} ;