1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
|
#ifdef HAVE_LIBBLKID
#include <blkid.h>
#endif
#include "blkdev.h"
#include "fdiskP.h"
/**
* SECTION: alignment
* @title: Alignment
* @short_description: functions to align partitions and work with disk topology and geometry
*
* The libfdisk aligns the end of the partitions to make it possible to align
* the next partition to the "grain" (see fdisk_get_grain()). The grain is
* usually 1MiB (or more for devices where optimal I/O is greater than 1MiB).
*
* It means that the library does not align strictly to physical sector size
* (or minimal or optimal I/O), but it uses greater granularity. It makes
* partition tables more portable. If you copy disk layout from 512-sector to
* 4K-sector device, all partitions are still aligned to physical sectors.
*
* This unified concept also makes partition tables more user friendly, all
* tables look same, LBA of the first partition is 2048 sectors everywhere, etc.
*
* It's recommended to not change any alignment or device properties. All is
* initialized by default by fdisk_assign_device().
*
* Note that terminology used by libfdisk is:
* - device properties: I/O limits (topology), geometry, sector size, ...
* - alignment: first, last LBA, grain, ...
*
* The alignment setting may be modified by disk label driver.
*/
/*
* Alignment according to logical granularity (usually 1MiB)
*/
static int lba_is_aligned(struct fdisk_context *cxt, fdisk_sector_t lba)
{
unsigned long granularity = max(cxt->phy_sector_size, cxt->min_io_size);
uintmax_t offset;
if (cxt->grain > granularity)
granularity = cxt->grain;
offset = (lba * cxt->sector_size) & (granularity - 1);
return !((granularity + cxt->alignment_offset - offset) & (granularity - 1));
}
/*
* Alignment according to physical device topology (usually minimal i/o size)
*/
static int lba_is_phy_aligned(struct fdisk_context *cxt, fdisk_sector_t lba)
{
unsigned long granularity = max(cxt->phy_sector_size, cxt->min_io_size);
uintmax_t offset = (lba * cxt->sector_size) & (granularity - 1);
return !((granularity + cxt->alignment_offset - offset) & (granularity - 1));
}
/**
* fdisk_align_lba:
* @cxt: context
* @lba: address to align
* @direction: FDISK_ALIGN_{UP,DOWN,NEAREST}
*
* This function aligns @lba to the "grain" (see fdisk_get_grain()). If the
* device uses alignment offset then the result is moved according the offset
* to be on the physical boundary.
*
* Returns: alignment LBA.
*/
fdisk_sector_t fdisk_align_lba(struct fdisk_context *cxt, fdisk_sector_t lba, int direction)
{
fdisk_sector_t res;
if (lba_is_aligned(cxt, lba))
res = lba;
else {
fdisk_sector_t sects_in_phy = cxt->grain / cxt->sector_size;
if (lba < cxt->first_lba)
res = cxt->first_lba;
else if (direction == FDISK_ALIGN_UP)
res = ((lba + sects_in_phy) / sects_in_phy) * sects_in_phy;
else if (direction == FDISK_ALIGN_DOWN)
res = (lba / sects_in_phy) * sects_in_phy;
else /* FDISK_ALIGN_NEAREST */
res = ((lba + sects_in_phy / 2) / sects_in_phy) * sects_in_phy;
if (cxt->alignment_offset && !lba_is_aligned(cxt, res) &&
res > cxt->alignment_offset / cxt->sector_size) {
/*
* apply alignment_offset
*
* On disk with alignment compensation physical blocks starts
* at LBA < 0 (usually LBA -1). It means we have to move LBA
* according the offset to be on the physical boundary.
*/
/* fprintf(stderr, "LBA: %llu apply alignment_offset\n", res); */
res -= (max(cxt->phy_sector_size, cxt->min_io_size) -
cxt->alignment_offset) / cxt->sector_size;
if (direction == FDISK_ALIGN_UP && res < lba)
res += sects_in_phy;
}
}
if (lba != res)
DBG(CXT, ul_debugobj(cxt, "LBA %ju -aligned-to-> %ju",
(uintmax_t) lba,
(uintmax_t) res));
return res;
}
/**
* fdisk_align_lba_in_range:
* @cxt: context
* @lba: LBA
* @start: range start
* @stop: range stop
*
* Align @lba, the result has to be between @start and @stop
*
* Returns: aligned LBA
*/
fdisk_sector_t fdisk_align_lba_in_range(struct fdisk_context *cxt,
fdisk_sector_t lba, fdisk_sector_t start, fdisk_sector_t stop)
{
fdisk_sector_t res;
start = fdisk_align_lba(cxt, start, FDISK_ALIGN_UP);
stop = fdisk_align_lba(cxt, stop, FDISK_ALIGN_DOWN);
lba = fdisk_align_lba(cxt, lba, FDISK_ALIGN_NEAREST);
if (lba < start)
res = start;
else if (lba > stop)
res = stop;
else
res = lba;
DBG(CXT, ul_debugobj(cxt, "LBA %ju range:<%ju..%ju>, result: %ju",
(uintmax_t) lba,
(uintmax_t) start,
(uintmax_t) stop,
(uintmax_t) res));
return res;
}
/**
* fdisk_lba_is_phy_aligned:
* @cxt: context
* @lba: LBA to check
*
* Check if the @lba is aligned to physical sector boundary.
*
* Returns: 1 if aligned.
*/
int fdisk_lba_is_phy_aligned(struct fdisk_context *cxt, fdisk_sector_t lba)
{
return lba_is_phy_aligned(cxt, lba);
}
static unsigned long get_sector_size(int fd)
{
int sect_sz;
if (!blkdev_get_sector_size(fd, §_sz))
return (unsigned long) sect_sz;
return DEFAULT_SECTOR_SIZE;
}
static void recount_geometry(struct fdisk_context *cxt)
{
if (!cxt->geom.heads)
cxt->geom.heads = 255;
if (!cxt->geom.sectors)
cxt->geom.sectors = 63;
cxt->geom.cylinders = cxt->total_sectors /
(cxt->geom.heads * cxt->geom.sectors);
}
/**
* fdisk_override_geometry:
* @cxt: fdisk context
* @cylinders: user specified cylinders
* @heads: user specified heads
* @sectors: user specified sectors
*
* Overrides auto-discovery. The function fdisk_reset_device_properties()
* restores the original setting.
*
* The difference between fdisk_override_geometry() and fdisk_save_user_geometry()
* is that saved user geometry is persistent setting and it's applied always
* when device is assigned to the context or device properties are reseted.
*
* Returns: 0 on success, < 0 on error.
*/
int fdisk_override_geometry(struct fdisk_context *cxt,
unsigned int cylinders,
unsigned int heads,
unsigned int sectors)
{
if (!cxt)
return -EINVAL;
if (heads)
cxt->geom.heads = heads;
if (sectors)
cxt->geom.sectors = sectors;
if (cylinders)
cxt->geom.cylinders = cylinders;
else
recount_geometry(cxt);
fdisk_reset_alignment(cxt);
DBG(CXT, ul_debugobj(cxt, "override C/H/S: %u/%u/%u",
(unsigned) cxt->geom.cylinders,
(unsigned) cxt->geom.heads,
(unsigned) cxt->geom.sectors));
return 0;
}
/**
* fdisk_save_user_geometry:
* @cxt: context
* @cylinders: C
* @heads: H
* @sectors: S
*
* Save user defined geometry to use it for partitioning.
*
* The user properties are applied by fdisk_assign_device() or
* fdisk_reset_device_properties().
* Returns: <0 on error, 0 on success.
*/
int fdisk_save_user_geometry(struct fdisk_context *cxt,
unsigned int cylinders,
unsigned int heads,
unsigned int sectors)
{
if (!cxt)
return -EINVAL;
if (heads)
cxt->user_geom.heads = heads > 256 ? 0 : heads;
if (sectors)
cxt->user_geom.sectors = sectors >= 64 ? 0 : sectors;
if (cylinders)
cxt->user_geom.cylinders = cylinders;
DBG(CXT, ul_debugobj(cxt, "user C/H/S: %u/%u/%u",
(unsigned) cxt->user_geom.cylinders,
(unsigned) cxt->user_geom.heads,
(unsigned) cxt->user_geom.sectors));
return 0;
}
/**
* fdisk_save_user_sector_size:
* @cxt: context
* @phy: physical sector size
* @log: logicla sector size
*
* Save user defined sector sizes to use it for partitioning.
*
* The user properties are applied by fdisk_assign_device() or
* fdisk_reset_device_properties().
*
* Returns: <0 on error, 0 on success.
*/
int fdisk_save_user_sector_size(struct fdisk_context *cxt,
unsigned int phy,
unsigned int log)
{
if (!cxt)
return -EINVAL;
DBG(CXT, ul_debugobj(cxt, "user phy/log sector size: %u/%u", phy, log));
cxt->user_pyh_sector = phy;
cxt->user_log_sector = log;
return 0;
}
/**
* fdisk_has_user_device_properties:
* @cxt: context
*
* Returns: 1 if user specified any properties
*/
int fdisk_has_user_device_properties(struct fdisk_context *cxt)
{
return (cxt->user_pyh_sector
|| cxt->user_log_sector
|| cxt->user_geom.heads
|| cxt->user_geom.sectors
|| cxt->user_geom.cylinders);
}
int fdisk_apply_user_device_properties(struct fdisk_context *cxt)
{
if (!cxt)
return -EINVAL;
DBG(CXT, ul_debugobj(cxt, "appling user device properties"));
if (cxt->user_pyh_sector)
cxt->phy_sector_size = cxt->user_pyh_sector;
if (cxt->user_log_sector)
cxt->sector_size = cxt->min_io_size =
cxt->io_size = cxt->user_log_sector;
if (cxt->user_geom.heads)
cxt->geom.heads = cxt->user_geom.heads;
if (cxt->user_geom.sectors)
cxt->geom.sectors = cxt->user_geom.sectors;
if (cxt->user_geom.cylinders)
cxt->geom.cylinders = cxt->user_geom.cylinders;
else if (cxt->user_geom.heads || cxt->user_geom.sectors)
recount_geometry(cxt);
fdisk_reset_alignment(cxt);
if (cxt->firstsector_bufsz != cxt->sector_size)
fdisk_read_firstsector(cxt);
DBG(CXT, ul_debugobj(cxt, "new C/H/S: %u/%u/%u",
(unsigned) cxt->geom.cylinders,
(unsigned) cxt->geom.heads,
(unsigned) cxt->geom.sectors));
DBG(CXT, ul_debugobj(cxt, "new log/phy sector size: %u/%u",
(unsigned) cxt->sector_size,
(unsigned) cxt->phy_sector_size));
return 0;
}
void fdisk_zeroize_device_properties(struct fdisk_context *cxt)
{
assert(cxt);
cxt->io_size = 0;
cxt->optimal_io_size = 0;
cxt->min_io_size = 0;
cxt->phy_sector_size = 0;
cxt->sector_size = 0;
cxt->alignment_offset = 0;
cxt->grain = 0;
cxt->first_lba = 0;
cxt->last_lba = 0;
cxt->total_sectors = 0;
memset(&cxt->geom, 0, sizeof(struct fdisk_geometry));
}
/**
* fdisk_reset_device_properties:
* @cxt: context
*
* Resets and discovery topology (I/O limits), geometry, re-read the first
* rector on the device if necessary and apply user device setting (geometry
* and sector size), then initialize alignment according to label driver (see
* fdisk_reset_alignment()).
*
* You don't have to use this function by default, fdisk_assign_device() is
* smart enough to initialize all necessary setting.
*
* Returns: 0 on success, <0 on error.
*/
int fdisk_reset_device_properties(struct fdisk_context *cxt)
{
int rc;
if (!cxt)
return -EINVAL;
DBG(CXT, ul_debugobj(cxt, "*** reseting device properties"));
fdisk_zeroize_device_properties(cxt);
fdisk_discover_topology(cxt);
fdisk_discover_geometry(cxt);
rc = fdisk_read_firstsector(cxt);
if (rc)
return rc;
fdisk_apply_user_device_properties(cxt);
return 0;
}
/*
* Generic (label independent) geometry
*/
int fdisk_discover_geometry(struct fdisk_context *cxt)
{
fdisk_sector_t nsects;
assert(cxt);
assert(cxt->geom.heads == 0);
DBG(CXT, ul_debugobj(cxt, "%s: discovering geometry...", cxt->dev_path));
/* get number of 512-byte sectors, and convert it the real sectors */
if (!blkdev_get_sectors(cxt->dev_fd, (unsigned long long *) &nsects))
cxt->total_sectors = (nsects / (cxt->sector_size >> 9));
DBG(CXT, ul_debugobj(cxt, "total sectors: %ju (ioctl=%ju)",
(uintmax_t) cxt->total_sectors,
(uintmax_t) nsects));
/* what the kernel/bios thinks the geometry is */
blkdev_get_geometry(cxt->dev_fd, &cxt->geom.heads, (unsigned int *) &cxt->geom.sectors);
/* obtained heads and sectors */
recount_geometry(cxt);
DBG(CXT, ul_debugobj(cxt, "result: C/H/S: %u/%u/%u",
(unsigned) cxt->geom.cylinders,
(unsigned) cxt->geom.heads,
(unsigned) cxt->geom.sectors));
return 0;
}
int fdisk_discover_topology(struct fdisk_context *cxt)
{
#ifdef HAVE_LIBBLKID
blkid_probe pr;
#endif
assert(cxt);
assert(cxt->sector_size == 0);
DBG(CXT, ul_debugobj(cxt, "%s: discovering topology...", cxt->dev_path));
#ifdef HAVE_LIBBLKID
DBG(CXT, ul_debugobj(cxt, "initialize libblkid prober"));
pr = blkid_new_probe();
if (pr && blkid_probe_set_device(pr, cxt->dev_fd, 0, 0) == 0) {
blkid_topology tp = blkid_probe_get_topology(pr);
if (tp) {
cxt->min_io_size = blkid_topology_get_minimum_io_size(tp);
cxt->optimal_io_size = blkid_topology_get_optimal_io_size(tp);
cxt->phy_sector_size = blkid_topology_get_physical_sector_size(tp);
cxt->alignment_offset = blkid_topology_get_alignment_offset(tp);
/* I/O size used by fdisk */
cxt->io_size = cxt->optimal_io_size;
if (!cxt->io_size)
/* optimal IO is optional, default to minimum IO */
cxt->io_size = cxt->min_io_size;
}
}
blkid_free_probe(pr);
#endif
cxt->sector_size = get_sector_size(cxt->dev_fd);
if (!cxt->phy_sector_size) /* could not discover physical size */
cxt->phy_sector_size = cxt->sector_size;
/* no blkid or error, use default values */
if (!cxt->min_io_size)
cxt->min_io_size = cxt->sector_size;
if (!cxt->io_size)
cxt->io_size = cxt->sector_size;
DBG(CXT, ul_debugobj(cxt, "result: log/phy sector size: %ld/%ld",
cxt->sector_size, cxt->phy_sector_size));
DBG(CXT, ul_debugobj(cxt, "result: fdisk/min/optimal io: %ld/%ld/%ld",
cxt->io_size, cxt->optimal_io_size, cxt->min_io_size));
return 0;
}
static int has_topology(struct fdisk_context *cxt)
{
/*
* Assume that the device provides topology info if
* optimal_io_size is set or alignment_offset is set or
* minimum_io_size is not power of 2.
*/
if (cxt &&
(cxt->optimal_io_size ||
cxt->alignment_offset ||
!is_power_of_2(cxt->min_io_size)))
return 1;
return 0;
}
/*
* The LBA of the first partition is based on the device geometry and topology.
* This offset is generic (and recommended) for all labels.
*
* Returns: 0 on error or number of logical sectors.
*/
static fdisk_sector_t topology_get_first_lba(struct fdisk_context *cxt)
{
fdisk_sector_t x = 0, res;
if (!cxt)
return 0;
if (!cxt->io_size)
fdisk_discover_topology(cxt);
/*
* Align the begin of partitions to:
*
* a) topology
* a2) alignment offset
* a1) or physical sector (minimal_io_size, aka "grain")
*
* b) or default to 1MiB (2048 sectrors, Windows Vista default)
*
* c) or for very small devices use 1 phy.sector
*/
if (has_topology(cxt)) {
if (cxt->alignment_offset)
x = cxt->alignment_offset;
else if (cxt->io_size > 2048 * 512)
x = cxt->io_size;
}
/* default to 1MiB */
if (!x)
x = 2048 * 512;
res = x / cxt->sector_size;
/* don't use huge offset on small devices */
if (cxt->total_sectors <= res * 4)
res = cxt->phy_sector_size / cxt->sector_size;
return res;
}
static unsigned long topology_get_grain(struct fdisk_context *cxt)
{
unsigned long res;
if (!cxt)
return 0;
if (!cxt->io_size)
fdisk_discover_topology(cxt);
res = cxt->io_size;
/* use 1MiB grain always when possible */
if (res < 2048 * 512)
res = 2048 * 512;
/* don't use huge grain on small devices */
if (cxt->total_sectors <= (res * 4 / cxt->sector_size))
res = cxt->phy_sector_size;
return res;
}
/**
* fdisk_reset_alignment:
* @cxt: fdisk context
*
* Resets alignment setting to the default and label specific values. This
* function does not change device properties (I/O limits, geometry etc.).
*
* Returns: 0 on success, < 0 in case of error.
*/
int fdisk_reset_alignment(struct fdisk_context *cxt)
{
int rc = 0;
if (!cxt)
return -EINVAL;
DBG(CXT, ul_debugobj(cxt, "reseting alignment..."));
/* default */
cxt->grain = topology_get_grain(cxt);
cxt->first_lba = topology_get_first_lba(cxt);
cxt->last_lba = cxt->total_sectors - 1;
/* overwrite default by label stuff */
if (cxt->label && cxt->label->op->reset_alignment)
rc = cxt->label->op->reset_alignment(cxt);
DBG(CXT, ul_debugobj(cxt, "alignment reseted to: "
"first LBA=%ju, last LBA=%ju, grain=%lu [rc=%d]",
(uintmax_t) cxt->first_lba, (uintmax_t) cxt->last_lba,
cxt->grain, rc));
return rc;
}
fdisk_sector_t fdisk_scround(struct fdisk_context *cxt, fdisk_sector_t num)
{
fdisk_sector_t un = fdisk_get_units_per_sector(cxt);
return (num + un - 1) / un;
}
fdisk_sector_t fdisk_cround(struct fdisk_context *cxt, fdisk_sector_t num)
{
return fdisk_use_cylinders(cxt) ?
(num / fdisk_get_units_per_sector(cxt)) + 1 : num;
}
/**
* fdisk_reread_partition_table:
* @cxt: context
*
* Force *kernel* to re-read partition table on block devices.
*
* Returns: 0 on success, < 0 in case of error.
*/
int fdisk_reread_partition_table(struct fdisk_context *cxt)
{
int i;
struct stat statbuf;
assert(cxt);
assert(cxt->dev_fd >= 0);
i = fstat(cxt->dev_fd, &statbuf);
if (i == 0 && S_ISBLK(statbuf.st_mode)) {
sync();
#ifdef BLKRRPART
fdisk_info(cxt, _("Calling ioctl() to re-read partition table."));
i = ioctl(cxt->dev_fd, BLKRRPART);
#else
errno = ENOSYS;
i = 1;
#endif
}
if (i) {
fdisk_warn(cxt, _("Re-reading the partition table failed."));
fdisk_info(cxt, _(
"The kernel still uses the old table. The "
"new table will be used at the next reboot "
"or after you run partprobe(8) or kpartx(8)."));
return -errno;
}
return 0;
}
|