summaryrefslogtreecommitdiffstats
path: root/depedencies/include/glm/gtx/quaternion.inl
diff options
context:
space:
mode:
Diffstat (limited to 'depedencies/include/glm/gtx/quaternion.inl')
-rw-r--r--depedencies/include/glm/gtx/quaternion.inl212
1 files changed, 0 insertions, 212 deletions
diff --git a/depedencies/include/glm/gtx/quaternion.inl b/depedencies/include/glm/gtx/quaternion.inl
deleted file mode 100644
index c86ec18..0000000
--- a/depedencies/include/glm/gtx/quaternion.inl
+++ /dev/null
@@ -1,212 +0,0 @@
-/// @ref gtx_quaternion
-/// @file glm/gtx/quaternion.inl
-
-#include <limits>
-#include "../gtc/constants.hpp"
-
-namespace glm
-{
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tvec3<T, P> cross(tvec3<T, P> const& v, tquat<T, P> const& q)
- {
- return inverse(q) * v;
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tvec3<T, P> cross(tquat<T, P> const& q, tvec3<T, P> const& v)
- {
- return q * v;
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tquat<T, P> squad
- (
- tquat<T, P> const & q1,
- tquat<T, P> const & q2,
- tquat<T, P> const & s1,
- tquat<T, P> const & s2,
- T const & h)
- {
- return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tquat<T, P> intermediate
- (
- tquat<T, P> const & prev,
- tquat<T, P> const & curr,
- tquat<T, P> const & next
- )
- {
- tquat<T, P> invQuat = inverse(curr);
- return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr;
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tquat<T, P> exp(tquat<T, P> const& q)
- {
- tvec3<T, P> u(q.x, q.y, q.z);
- T const Angle = glm::length(u);
- if (Angle < epsilon<T>())
- return tquat<T, P>();
-
- tvec3<T, P> const v(u / Angle);
- return tquat<T, P>(cos(Angle), sin(Angle) * v);
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tquat<T, P> log(tquat<T, P> const& q)
- {
- tvec3<T, P> u(q.x, q.y, q.z);
- T Vec3Len = length(u);
-
- if (Vec3Len < epsilon<T>())
- {
- if(q.w > static_cast<T>(0))
- return tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
- else if(q.w < static_cast<T>(0))
- return tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
- else
- return tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
- }
- else
- {
- T t = atan(Vec3Len, T(q.w)) / Vec3Len;
- T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w;
- return tquat<T, P>(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z);
- }
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tquat<T, P> pow(tquat<T, P> const & x, T const & y)
- {
- //Raising to the power of 0 should yield 1
- //Needed to prevent a division by 0 error later on
- if(y > -epsilon<T>() && y < epsilon<T>())
- return tquat<T, P>(1,0,0,0);
-
- //To deal with non-unit quaternions
- T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
-
- //Equivalent to raising a real number to a power
- //Needed to prevent a division by 0 error later on
- if(abs(x.w / magnitude) > static_cast<T>(1) - epsilon<T>() && abs(x.w / magnitude) < static_cast<T>(1) + epsilon<T>())
- return tquat<T, P>(pow(x.w, y),0,0,0);
-
- T Angle = acos(x.w / magnitude);
- T NewAngle = Angle * y;
- T Div = sin(NewAngle) / sin(Angle);
- T Mag = pow(magnitude, y - static_cast<T>(1));
-
- return tquat<T, P>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tvec3<T, P> rotate(tquat<T, P> const& q, tvec3<T, P> const& v)
- {
- return q * v;
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tvec4<T, P> rotate(tquat<T, P> const& q, tvec4<T, P> const& v)
- {
- return q * v;
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER T extractRealComponent(tquat<T, P> const& q)
- {
- T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
- if(w < T(0))
- return T(0);
- else
- return -sqrt(w);
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER T length2(tquat<T, P> const& q)
- {
- return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tquat<T, P> shortMix(tquat<T, P> const& x, tquat<T, P> const& y, T const& a)
- {
- if(a <= static_cast<T>(0)) return x;
- if(a >= static_cast<T>(1)) return y;
-
- T fCos = dot(x, y);
- tquat<T, P> y2(y); //BUG!!! tquat<T> y2;
- if(fCos < static_cast<T>(0))
- {
- y2 = -y;
- fCos = -fCos;
- }
-
- //if(fCos > 1.0f) // problem
- T k0, k1;
- if(fCos > (static_cast<T>(1) - epsilon<T>()))
- {
- k0 = static_cast<T>(1) - a;
- k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a;
- }
- else
- {
- T fSin = sqrt(T(1) - fCos * fCos);
- T fAngle = atan(fSin, fCos);
- T fOneOverSin = static_cast<T>(1) / fSin;
- k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin;
- k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
- }
-
- return tquat<T, P>(
- k0 * x.w + k1 * y2.w,
- k0 * x.x + k1 * y2.x,
- k0 * x.y + k1 * y2.y,
- k0 * x.z + k1 * y2.z);
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tquat<T, P> fastMix(tquat<T, P> const& x, tquat<T, P> const& y, T const & a)
- {
- return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
- }
-
- template <typename T, precision P>
- GLM_FUNC_QUALIFIER tquat<T, P> rotation(tvec3<T, P> const& orig, tvec3<T, P> const& dest)
- {
- T cosTheta = dot(orig, dest);
- tvec3<T, P> rotationAxis;
-
- if(cosTheta >= static_cast<T>(1) - epsilon<T>())
- return quat();
-
- if(cosTheta < static_cast<T>(-1) + epsilon<T>())
- {
- // special case when vectors in opposite directions :
- // there is no "ideal" rotation axis
- // So guess one; any will do as long as it's perpendicular to start
- // This implementation favors a rotation around the Up axis (Y),
- // since it's often what you want to do.
- rotationAxis = cross(tvec3<T, P>(0, 0, 1), orig);
- if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
- rotationAxis = cross(tvec3<T, P>(1, 0, 0), orig);
-
- rotationAxis = normalize(rotationAxis);
- return angleAxis(pi<T>(), rotationAxis);
- }
-
- // Implementation from Stan Melax's Game Programming Gems 1 article
- rotationAxis = cross(orig, dest);
-
- T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
- T invs = static_cast<T>(1) / s;
-
- return tquat<T, P>(
- s * static_cast<T>(0.5f),
- rotationAxis.x * invs,
- rotationAxis.y * invs,
- rotationAxis.z * invs);
- }
-
-}//namespace glm