From 75160b12821f7f4299cce7f0b69c83c1502ae071 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Anton=20Luka=20=C5=A0ijanec?= Date: Mon, 27 May 2024 13:08:29 +0200 Subject: 2024-02-19 upstream --- .../src/PhpSpreadsheet/Calculation/Statistical.php | 3906 ++++++++++++++++++++ 1 file changed, 3906 insertions(+) create mode 100644 vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Calculation/Statistical.php (limited to 'vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Calculation/Statistical.php') diff --git a/vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Calculation/Statistical.php b/vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Calculation/Statistical.php new file mode 100644 index 0000000..641e9d2 --- /dev/null +++ b/vendor/phpoffice/phpspreadsheet/src/PhpSpreadsheet/Calculation/Statistical.php @@ -0,0 +1,3906 @@ + $value) { + if ((is_bool($value)) || (is_string($value)) || ($value === null)) { + unset($array1[$key], $array2[$key]); + } + } + foreach ($array2 as $key => $value) { + if ((is_bool($value)) || (is_string($value)) || ($value === null)) { + unset($array1[$key], $array2[$key]); + } + } + $array1 = array_merge($array1); + $array2 = array_merge($array2); + + return true; + } + + /** + * Incomplete beta function. + * + * @author Jaco van Kooten + * @author Paul Meagher + * + * The computation is based on formulas from Numerical Recipes, Chapter 6.4 (W.H. Press et al, 1992). + * + * @param mixed $x require 0<=x<=1 + * @param mixed $p require p>0 + * @param mixed $q require q>0 + * + * @return float 0 if x<0, p<=0, q<=0 or p+q>2.55E305 and 1 if x>1 to avoid errors and over/underflow + */ + private static function incompleteBeta($x, $p, $q) + { + if ($x <= 0.0) { + return 0.0; + } elseif ($x >= 1.0) { + return 1.0; + } elseif (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) { + return 0.0; + } + $beta_gam = exp((0 - self::logBeta($p, $q)) + $p * log($x) + $q * log(1.0 - $x)); + if ($x < ($p + 1.0) / ($p + $q + 2.0)) { + return $beta_gam * self::betaFraction($x, $p, $q) / $p; + } + + return 1.0 - ($beta_gam * self::betaFraction(1 - $x, $q, $p) / $q); + } + + // Function cache for logBeta function + private static $logBetaCacheP = 0.0; + + private static $logBetaCacheQ = 0.0; + + private static $logBetaCacheResult = 0.0; + + /** + * The natural logarithm of the beta function. + * + * @param mixed $p require p>0 + * @param mixed $q require q>0 + * + * @return float 0 if p<=0, q<=0 or p+q>2.55E305 to avoid errors and over/underflow + * + * @author Jaco van Kooten + */ + private static function logBeta($p, $q) + { + if ($p != self::$logBetaCacheP || $q != self::$logBetaCacheQ) { + self::$logBetaCacheP = $p; + self::$logBetaCacheQ = $q; + if (($p <= 0.0) || ($q <= 0.0) || (($p + $q) > self::LOG_GAMMA_X_MAX_VALUE)) { + self::$logBetaCacheResult = 0.0; + } else { + self::$logBetaCacheResult = self::logGamma($p) + self::logGamma($q) - self::logGamma($p + $q); + } + } + + return self::$logBetaCacheResult; + } + + /** + * Evaluates of continued fraction part of incomplete beta function. + * Based on an idea from Numerical Recipes (W.H. Press et al, 1992). + * + * @author Jaco van Kooten + * + * @param mixed $x + * @param mixed $p + * @param mixed $q + * + * @return float + */ + private static function betaFraction($x, $p, $q) + { + $c = 1.0; + $sum_pq = $p + $q; + $p_plus = $p + 1.0; + $p_minus = $p - 1.0; + $h = 1.0 - $sum_pq * $x / $p_plus; + if (abs($h) < self::XMININ) { + $h = self::XMININ; + } + $h = 1.0 / $h; + $frac = $h; + $m = 1; + $delta = 0.0; + while ($m <= self::MAX_ITERATIONS && abs($delta - 1.0) > Functions::PRECISION) { + $m2 = 2 * $m; + // even index for d + $d = $m * ($q - $m) * $x / (($p_minus + $m2) * ($p + $m2)); + $h = 1.0 + $d * $h; + if (abs($h) < self::XMININ) { + $h = self::XMININ; + } + $h = 1.0 / $h; + $c = 1.0 + $d / $c; + if (abs($c) < self::XMININ) { + $c = self::XMININ; + } + $frac *= $h * $c; + // odd index for d + $d = -($p + $m) * ($sum_pq + $m) * $x / (($p + $m2) * ($p_plus + $m2)); + $h = 1.0 + $d * $h; + if (abs($h) < self::XMININ) { + $h = self::XMININ; + } + $h = 1.0 / $h; + $c = 1.0 + $d / $c; + if (abs($c) < self::XMININ) { + $c = self::XMININ; + } + $delta = $h * $c; + $frac *= $delta; + ++$m; + } + + return $frac; + } + + /** + * logGamma function. + * + * @version 1.1 + * + * @author Jaco van Kooten + * + * Original author was Jaco van Kooten. Ported to PHP by Paul Meagher. + * + * The natural logarithm of the gamma function.
+ * Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz
+ * Applied Mathematics Division
+ * Argonne National Laboratory
+ * Argonne, IL 60439
+ *

+ * References: + *

    + *
  1. W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural + * Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203.
  2. + *
  3. K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969.
  4. + *
  5. Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968.
  6. + *
+ *

+ *

+ * From the original documentation: + *

+ *

+ * This routine calculates the LOG(GAMMA) function for a positive real argument X. + * Computation is based on an algorithm outlined in references 1 and 2. + * The program uses rational functions that theoretically approximate LOG(GAMMA) + * to at least 18 significant decimal digits. The approximation for X > 12 is from + * reference 3, while approximations for X < 12.0 are similar to those in reference + * 1, but are unpublished. The accuracy achieved depends on the arithmetic system, + * the compiler, the intrinsic functions, and proper selection of the + * machine-dependent constants. + *

+ *

+ * Error returns:
+ * The program returns the value XINF for X .LE. 0.0 or when overflow would occur. + * The computation is believed to be free of underflow and overflow. + *

+ * + * @return float MAX_VALUE for x < 0.0 or when overflow would occur, i.e. x > 2.55E305 + */ + + // Function cache for logGamma + private static $logGammaCacheResult = 0.0; + + private static $logGammaCacheX = 0.0; + + private static function logGamma($x) + { + // Log Gamma related constants + static $lg_d1 = -0.5772156649015328605195174; + static $lg_d2 = 0.4227843350984671393993777; + static $lg_d4 = 1.791759469228055000094023; + + static $lg_p1 = [ + 4.945235359296727046734888, + 201.8112620856775083915565, + 2290.838373831346393026739, + 11319.67205903380828685045, + 28557.24635671635335736389, + 38484.96228443793359990269, + 26377.48787624195437963534, + 7225.813979700288197698961, + ]; + static $lg_p2 = [ + 4.974607845568932035012064, + 542.4138599891070494101986, + 15506.93864978364947665077, + 184793.2904445632425417223, + 1088204.76946882876749847, + 3338152.967987029735917223, + 5106661.678927352456275255, + 3074109.054850539556250927, + ]; + static $lg_p4 = [ + 14745.02166059939948905062, + 2426813.369486704502836312, + 121475557.4045093227939592, + 2663432449.630976949898078, + 29403789566.34553899906876, + 170266573776.5398868392998, + 492612579337.743088758812, + 560625185622.3951465078242, + ]; + static $lg_q1 = [ + 67.48212550303777196073036, + 1113.332393857199323513008, + 7738.757056935398733233834, + 27639.87074403340708898585, + 54993.10206226157329794414, + 61611.22180066002127833352, + 36351.27591501940507276287, + 8785.536302431013170870835, + ]; + static $lg_q2 = [ + 183.0328399370592604055942, + 7765.049321445005871323047, + 133190.3827966074194402448, + 1136705.821321969608938755, + 5267964.117437946917577538, + 13467014.54311101692290052, + 17827365.30353274213975932, + 9533095.591844353613395747, + ]; + static $lg_q4 = [ + 2690.530175870899333379843, + 639388.5654300092398984238, + 41355999.30241388052042842, + 1120872109.61614794137657, + 14886137286.78813811542398, + 101680358627.2438228077304, + 341747634550.7377132798597, + 446315818741.9713286462081, + ]; + static $lg_c = [ + -0.001910444077728, + 8.4171387781295e-4, + -5.952379913043012e-4, + 7.93650793500350248e-4, + -0.002777777777777681622553, + 0.08333333333333333331554247, + 0.0057083835261, + ]; + + // Rough estimate of the fourth root of logGamma_xBig + static $lg_frtbig = 2.25e76; + static $pnt68 = 0.6796875; + + if ($x == self::$logGammaCacheX) { + return self::$logGammaCacheResult; + } + $y = $x; + if ($y > 0.0 && $y <= self::LOG_GAMMA_X_MAX_VALUE) { + if ($y <= self::EPS) { + $res = -log($y); + } elseif ($y <= 1.5) { + // --------------------- + // EPS .LT. X .LE. 1.5 + // --------------------- + if ($y < $pnt68) { + $corr = -log($y); + $xm1 = $y; + } else { + $corr = 0.0; + $xm1 = $y - 1.0; + } + if ($y <= 0.5 || $y >= $pnt68) { + $xden = 1.0; + $xnum = 0.0; + for ($i = 0; $i < 8; ++$i) { + $xnum = $xnum * $xm1 + $lg_p1[$i]; + $xden = $xden * $xm1 + $lg_q1[$i]; + } + $res = $corr + $xm1 * ($lg_d1 + $xm1 * ($xnum / $xden)); + } else { + $xm2 = $y - 1.0; + $xden = 1.0; + $xnum = 0.0; + for ($i = 0; $i < 8; ++$i) { + $xnum = $xnum * $xm2 + $lg_p2[$i]; + $xden = $xden * $xm2 + $lg_q2[$i]; + } + $res = $corr + $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); + } + } elseif ($y <= 4.0) { + // --------------------- + // 1.5 .LT. X .LE. 4.0 + // --------------------- + $xm2 = $y - 2.0; + $xden = 1.0; + $xnum = 0.0; + for ($i = 0; $i < 8; ++$i) { + $xnum = $xnum * $xm2 + $lg_p2[$i]; + $xden = $xden * $xm2 + $lg_q2[$i]; + } + $res = $xm2 * ($lg_d2 + $xm2 * ($xnum / $xden)); + } elseif ($y <= 12.0) { + // ---------------------- + // 4.0 .LT. X .LE. 12.0 + // ---------------------- + $xm4 = $y - 4.0; + $xden = -1.0; + $xnum = 0.0; + for ($i = 0; $i < 8; ++$i) { + $xnum = $xnum * $xm4 + $lg_p4[$i]; + $xden = $xden * $xm4 + $lg_q4[$i]; + } + $res = $lg_d4 + $xm4 * ($xnum / $xden); + } else { + // --------------------------------- + // Evaluate for argument .GE. 12.0 + // --------------------------------- + $res = 0.0; + if ($y <= $lg_frtbig) { + $res = $lg_c[6]; + $ysq = $y * $y; + for ($i = 0; $i < 6; ++$i) { + $res = $res / $ysq + $lg_c[$i]; + } + $res /= $y; + $corr = log($y); + $res = $res + log(self::SQRT2PI) - 0.5 * $corr; + $res += $y * ($corr - 1.0); + } + } + } else { + // -------------------------- + // Return for bad arguments + // -------------------------- + $res = self::MAX_VALUE; + } + // ------------------------------ + // Final adjustments and return + // ------------------------------ + self::$logGammaCacheX = $x; + self::$logGammaCacheResult = $res; + + return $res; + } + + // + // Private implementation of the incomplete Gamma function + // + private static function incompleteGamma($a, $x) + { + static $max = 32; + $summer = 0; + for ($n = 0; $n <= $max; ++$n) { + $divisor = $a; + for ($i = 1; $i <= $n; ++$i) { + $divisor *= ($a + $i); + } + $summer += ($x ** $n / $divisor); + } + + return $x ** $a * exp(0 - $x) * $summer; + } + + // + // Private implementation of the Gamma function + // + private static function gamma($data) + { + if ($data == 0.0) { + return 0; + } + + static $p0 = 1.000000000190015; + static $p = [ + 1 => 76.18009172947146, + 2 => -86.50532032941677, + 3 => 24.01409824083091, + 4 => -1.231739572450155, + 5 => 1.208650973866179e-3, + 6 => -5.395239384953e-6, + ]; + + $y = $x = $data; + $tmp = $x + 5.5; + $tmp -= ($x + 0.5) * log($tmp); + + $summer = $p0; + for ($j = 1; $j <= 6; ++$j) { + $summer += ($p[$j] / ++$y); + } + + return exp(0 - $tmp + log(self::SQRT2PI * $summer / $x)); + } + + /* + * inverse_ncdf.php + * ------------------- + * begin : Friday, January 16, 2004 + * copyright : (C) 2004 Michael Nickerson + * email : nickersonm@yahoo.com + * + */ + private static function inverseNcdf($p) + { + // Inverse ncdf approximation by Peter J. Acklam, implementation adapted to + // PHP by Michael Nickerson, using Dr. Thomas Ziegler's C implementation as + // a guide. http://home.online.no/~pjacklam/notes/invnorm/index.html + // I have not checked the accuracy of this implementation. Be aware that PHP + // will truncate the coeficcients to 14 digits. + + // You have permission to use and distribute this function freely for + // whatever purpose you want, but please show common courtesy and give credit + // where credit is due. + + // Input paramater is $p - probability - where 0 < p < 1. + + // Coefficients in rational approximations + static $a = [ + 1 => -3.969683028665376e+01, + 2 => 2.209460984245205e+02, + 3 => -2.759285104469687e+02, + 4 => 1.383577518672690e+02, + 5 => -3.066479806614716e+01, + 6 => 2.506628277459239e+00, + ]; + + static $b = [ + 1 => -5.447609879822406e+01, + 2 => 1.615858368580409e+02, + 3 => -1.556989798598866e+02, + 4 => 6.680131188771972e+01, + 5 => -1.328068155288572e+01, + ]; + + static $c = [ + 1 => -7.784894002430293e-03, + 2 => -3.223964580411365e-01, + 3 => -2.400758277161838e+00, + 4 => -2.549732539343734e+00, + 5 => 4.374664141464968e+00, + 6 => 2.938163982698783e+00, + ]; + + static $d = [ + 1 => 7.784695709041462e-03, + 2 => 3.224671290700398e-01, + 3 => 2.445134137142996e+00, + 4 => 3.754408661907416e+00, + ]; + + // Define lower and upper region break-points. + $p_low = 0.02425; //Use lower region approx. below this + $p_high = 1 - $p_low; //Use upper region approx. above this + + if (0 < $p && $p < $p_low) { + // Rational approximation for lower region. + $q = sqrt(-2 * log($p)); + + return ((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / + (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); + } elseif ($p_low <= $p && $p <= $p_high) { + // Rational approximation for central region. + $q = $p - 0.5; + $r = $q * $q; + + return ((((($a[1] * $r + $a[2]) * $r + $a[3]) * $r + $a[4]) * $r + $a[5]) * $r + $a[6]) * $q / + ((((($b[1] * $r + $b[2]) * $r + $b[3]) * $r + $b[4]) * $r + $b[5]) * $r + 1); + } elseif ($p_high < $p && $p < 1) { + // Rational approximation for upper region. + $q = sqrt(-2 * log(1 - $p)); + + return -((((($c[1] * $q + $c[2]) * $q + $c[3]) * $q + $c[4]) * $q + $c[5]) * $q + $c[6]) / + (((($d[1] * $q + $d[2]) * $q + $d[3]) * $q + $d[4]) * $q + 1); + } + // If 0 < p < 1, return a null value + return Functions::NULL(); + } + + /** + * MS Excel does not count Booleans if passed as cell values, but they are counted if passed as literals. + * OpenOffice Calc always counts Booleans. + * Gnumeric never counts Booleans. + * + * @param mixed $arg + * @param mixed $k + * + * @return int|mixed + */ + private static function testAcceptedBoolean($arg, $k) + { + if ( + (is_bool($arg)) && + ((!Functions::isCellValue($k) && (Functions::getCompatibilityMode() === Functions::COMPATIBILITY_EXCEL)) || + (Functions::getCompatibilityMode() === Functions::COMPATIBILITY_OPENOFFICE)) + ) { + $arg = (int) $arg; + } + + return $arg; + } + + /** + * @param mixed $arg + * @param mixed $k + * + * @return bool + */ + private static function isAcceptedCountable($arg, $k) + { + if ( + ((is_numeric($arg)) && (!is_string($arg))) || + ((is_numeric($arg)) && (!Functions::isCellValue($k)) && + (Functions::getCompatibilityMode() !== Functions::COMPATIBILITY_GNUMERIC)) + ) { + return true; + } + + return false; + } + + /** + * AVEDEV. + * + * Returns the average of the absolute deviations of data points from their mean. + * AVEDEV is a measure of the variability in a data set. + * + * Excel Function: + * AVEDEV(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function AVEDEV(...$args) + { + $aArgs = Functions::flattenArrayIndexed($args); + + // Return value + $returnValue = 0; + + $aMean = self::AVERAGE(...$args); + if ($aMean === Functions::DIV0()) { + return Functions::NAN(); + } elseif ($aMean === Functions::VALUE()) { + return Functions::VALUE(); + } + + $aCount = 0; + foreach ($aArgs as $k => $arg) { + $arg = self::testAcceptedBoolean($arg, $k); + // Is it a numeric value? + // Strings containing numeric values are only counted if they are string literals (not cell values) + // and then only in MS Excel and in Open Office, not in Gnumeric + if ((is_string($arg)) && (!is_numeric($arg)) && (!Functions::isCellValue($k))) { + return Functions::VALUE(); + } + if (self::isAcceptedCountable($arg, $k)) { + $returnValue += abs($arg - $aMean); + ++$aCount; + } + } + + // Return + if ($aCount === 0) { + return Functions::DIV0(); + } + + return $returnValue / $aCount; + } + + /** + * AVERAGE. + * + * Returns the average (arithmetic mean) of the arguments + * + * Excel Function: + * AVERAGE(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function AVERAGE(...$args) + { + $returnValue = $aCount = 0; + + // Loop through arguments + foreach (Functions::flattenArrayIndexed($args) as $k => $arg) { + $arg = self::testAcceptedBoolean($arg, $k); + // Is it a numeric value? + // Strings containing numeric values are only counted if they are string literals (not cell values) + // and then only in MS Excel and in Open Office, not in Gnumeric + if ((is_string($arg)) && (!is_numeric($arg)) && (!Functions::isCellValue($k))) { + return Functions::VALUE(); + } + if (self::isAcceptedCountable($arg, $k)) { + $returnValue += $arg; + ++$aCount; + } + } + + // Return + if ($aCount > 0) { + return $returnValue / $aCount; + } + + return Functions::DIV0(); + } + + /** + * AVERAGEA. + * + * Returns the average of its arguments, including numbers, text, and logical values + * + * Excel Function: + * AVERAGEA(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function AVERAGEA(...$args) + { + $returnValue = null; + + $aCount = 0; + // Loop through arguments + foreach (Functions::flattenArrayIndexed($args) as $k => $arg) { + if ( + (is_bool($arg)) && + (!Functions::isMatrixValue($k)) + ) { + } else { + if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { + if (is_bool($arg)) { + $arg = (int) $arg; + } elseif (is_string($arg)) { + $arg = 0; + } + $returnValue += $arg; + ++$aCount; + } + } + } + + if ($aCount > 0) { + return $returnValue / $aCount; + } + + return Functions::DIV0(); + } + + /** + * AVERAGEIF. + * + * Returns the average value from a range of cells that contain numbers within the list of arguments + * + * Excel Function: + * AVERAGEIF(value1[,value2[, ...]],condition) + * + * @param mixed $aArgs Data values + * @param string $condition the criteria that defines which cells will be checked + * @param mixed[] $averageArgs Data values + * + * @return float|string + */ + public static function AVERAGEIF($aArgs, $condition, $averageArgs = []) + { + $returnValue = 0; + + $aArgs = Functions::flattenArray($aArgs); + $averageArgs = Functions::flattenArray($averageArgs); + if (empty($averageArgs)) { + $averageArgs = $aArgs; + } + $condition = Functions::ifCondition($condition); + $conditionIsNumeric = strpos($condition, '"') === false; + + // Loop through arguments + $aCount = 0; + foreach ($aArgs as $key => $arg) { + if (!is_numeric($arg)) { + if ($conditionIsNumeric) { + continue; + } + $arg = Calculation::wrapResult(strtoupper($arg)); + } elseif (!$conditionIsNumeric) { + continue; + } + $testCondition = '=' . $arg . $condition; + if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) { + $returnValue += $averageArgs[$key]; + ++$aCount; + } + } + + if ($aCount > 0) { + return $returnValue / $aCount; + } + + return Functions::DIV0(); + } + + /** + * BETADIST. + * + * Returns the beta distribution. + * + * @param float $value Value at which you want to evaluate the distribution + * @param float $alpha Parameter to the distribution + * @param float $beta Parameter to the distribution + * @param mixed $rMin + * @param mixed $rMax + * + * @return float|string + */ + public static function BETADIST($value, $alpha, $beta, $rMin = 0, $rMax = 1) + { + $value = Functions::flattenSingleValue($value); + $alpha = Functions::flattenSingleValue($alpha); + $beta = Functions::flattenSingleValue($beta); + $rMin = Functions::flattenSingleValue($rMin); + $rMax = Functions::flattenSingleValue($rMax); + + if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { + if (($value < $rMin) || ($value > $rMax) || ($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax)) { + return Functions::NAN(); + } + if ($rMin > $rMax) { + $tmp = $rMin; + $rMin = $rMax; + $rMax = $tmp; + } + $value -= $rMin; + $value /= ($rMax - $rMin); + + return self::incompleteBeta($value, $alpha, $beta); + } + + return Functions::VALUE(); + } + + /** + * BETAINV. + * + * Returns the inverse of the Beta distribution. + * + * @param float $probability Probability at which you want to evaluate the distribution + * @param float $alpha Parameter to the distribution + * @param float $beta Parameter to the distribution + * @param float $rMin Minimum value + * @param float $rMax Maximum value + * + * @return float|string + */ + public static function BETAINV($probability, $alpha, $beta, $rMin = 0, $rMax = 1) + { + $probability = Functions::flattenSingleValue($probability); + $alpha = Functions::flattenSingleValue($alpha); + $beta = Functions::flattenSingleValue($beta); + $rMin = Functions::flattenSingleValue($rMin); + $rMax = Functions::flattenSingleValue($rMax); + + if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta)) && (is_numeric($rMin)) && (is_numeric($rMax))) { + if (($alpha <= 0) || ($beta <= 0) || ($rMin == $rMax) || ($probability <= 0) || ($probability > 1)) { + return Functions::NAN(); + } + if ($rMin > $rMax) { + $tmp = $rMin; + $rMin = $rMax; + $rMax = $tmp; + } + $a = 0; + $b = 2; + + $i = 0; + while ((($b - $a) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) { + $guess = ($a + $b) / 2; + $result = self::BETADIST($guess, $alpha, $beta); + if (($result == $probability) || ($result == 0)) { + $b = $a; + } elseif ($result > $probability) { + $b = $guess; + } else { + $a = $guess; + } + } + if ($i == self::MAX_ITERATIONS) { + return Functions::NA(); + } + + return round($rMin + $guess * ($rMax - $rMin), 12); + } + + return Functions::VALUE(); + } + + /** + * BINOMDIST. + * + * Returns the individual term binomial distribution probability. Use BINOMDIST in problems with + * a fixed number of tests or trials, when the outcomes of any trial are only success or failure, + * when trials are independent, and when the probability of success is constant throughout the + * experiment. For example, BINOMDIST can calculate the probability that two of the next three + * babies born are male. + * + * @param float $value Number of successes in trials + * @param float $trials Number of trials + * @param float $probability Probability of success on each trial + * @param bool $cumulative + * + * @return float|string + */ + public static function BINOMDIST($value, $trials, $probability, $cumulative) + { + $value = Functions::flattenSingleValue($value); + $trials = Functions::flattenSingleValue($trials); + $probability = Functions::flattenSingleValue($probability); + + if ((is_numeric($value)) && (is_numeric($trials)) && (is_numeric($probability))) { + $value = floor($value); + $trials = floor($trials); + if (($value < 0) || ($value > $trials)) { + return Functions::NAN(); + } + if (($probability < 0) || ($probability > 1)) { + return Functions::NAN(); + } + if ((is_numeric($cumulative)) || (is_bool($cumulative))) { + if ($cumulative) { + $summer = 0; + for ($i = 0; $i <= $value; ++$i) { + $summer += MathTrig::COMBIN($trials, $i) * $probability ** $i * (1 - $probability) ** ($trials - $i); + } + + return $summer; + } + + return MathTrig::COMBIN($trials, $value) * $probability ** $value * (1 - $probability) ** ($trials - $value); + } + } + + return Functions::VALUE(); + } + + /** + * CHIDIST. + * + * Returns the one-tailed probability of the chi-squared distribution. + * + * @param float $value Value for the function + * @param float $degrees degrees of freedom + * + * @return float|string + */ + public static function CHIDIST($value, $degrees) + { + $value = Functions::flattenSingleValue($value); + $degrees = Functions::flattenSingleValue($degrees); + + if ((is_numeric($value)) && (is_numeric($degrees))) { + $degrees = floor($degrees); + if ($degrees < 1) { + return Functions::NAN(); + } + if ($value < 0) { + if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { + return 1; + } + + return Functions::NAN(); + } + + return 1 - (self::incompleteGamma($degrees / 2, $value / 2) / self::gamma($degrees / 2)); + } + + return Functions::VALUE(); + } + + /** + * CHIINV. + * + * Returns the one-tailed probability of the chi-squared distribution. + * + * @param float $probability Probability for the function + * @param float $degrees degrees of freedom + * + * @return float|string + */ + public static function CHIINV($probability, $degrees) + { + $probability = Functions::flattenSingleValue($probability); + $degrees = Functions::flattenSingleValue($degrees); + + if ((is_numeric($probability)) && (is_numeric($degrees))) { + $degrees = floor($degrees); + + $xLo = 100; + $xHi = 0; + + $x = $xNew = 1; + $dx = 1; + $i = 0; + + while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) { + // Apply Newton-Raphson step + $result = 1 - (self::incompleteGamma($degrees / 2, $x / 2) / self::gamma($degrees / 2)); + $error = $result - $probability; + if ($error == 0.0) { + $dx = 0; + } elseif ($error < 0.0) { + $xLo = $x; + } else { + $xHi = $x; + } + // Avoid division by zero + if ($result != 0.0) { + $dx = $error / $result; + $xNew = $x - $dx; + } + // If the NR fails to converge (which for example may be the + // case if the initial guess is too rough) we apply a bisection + // step to determine a more narrow interval around the root. + if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { + $xNew = ($xLo + $xHi) / 2; + $dx = $xNew - $x; + } + $x = $xNew; + } + if ($i == self::MAX_ITERATIONS) { + return Functions::NA(); + } + + return round($x, 12); + } + + return Functions::VALUE(); + } + + /** + * CONFIDENCE. + * + * Returns the confidence interval for a population mean + * + * @param float $alpha + * @param float $stdDev Standard Deviation + * @param float $size + * + * @return float|string + */ + public static function CONFIDENCE($alpha, $stdDev, $size) + { + $alpha = Functions::flattenSingleValue($alpha); + $stdDev = Functions::flattenSingleValue($stdDev); + $size = Functions::flattenSingleValue($size); + + if ((is_numeric($alpha)) && (is_numeric($stdDev)) && (is_numeric($size))) { + $size = floor($size); + if (($alpha <= 0) || ($alpha >= 1)) { + return Functions::NAN(); + } + if (($stdDev <= 0) || ($size < 1)) { + return Functions::NAN(); + } + + return self::NORMSINV(1 - $alpha / 2) * $stdDev / sqrt($size); + } + + return Functions::VALUE(); + } + + /** + * CORREL. + * + * Returns covariance, the average of the products of deviations for each data point pair. + * + * @param mixed $yValues array of mixed Data Series Y + * @param null|mixed $xValues array of mixed Data Series X + * + * @return float|string + */ + public static function CORREL($yValues, $xValues = null) + { + if (($xValues === null) || (!is_array($yValues)) || (!is_array($xValues))) { + return Functions::VALUE(); + } + if (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return Functions::DIV0(); + } + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); + + return $bestFitLinear->getCorrelation(); + } + + /** + * COUNT. + * + * Counts the number of cells that contain numbers within the list of arguments + * + * Excel Function: + * COUNT(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return int + */ + public static function COUNT(...$args) + { + $returnValue = 0; + + // Loop through arguments + $aArgs = Functions::flattenArrayIndexed($args); + foreach ($aArgs as $k => $arg) { + $arg = self::testAcceptedBoolean($arg, $k); + // Is it a numeric value? + // Strings containing numeric values are only counted if they are string literals (not cell values) + // and then only in MS Excel and in Open Office, not in Gnumeric + if (self::isAcceptedCountable($arg, $k)) { + ++$returnValue; + } + } + + return $returnValue; + } + + /** + * COUNTA. + * + * Counts the number of cells that are not empty within the list of arguments + * + * Excel Function: + * COUNTA(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return int + */ + public static function COUNTA(...$args) + { + $returnValue = 0; + + // Loop through arguments + $aArgs = Functions::flattenArrayIndexed($args); + foreach ($aArgs as $k => $arg) { + // Nulls are counted if literals, but not if cell values + if ($arg !== null || (!Functions::isCellValue($k))) { + ++$returnValue; + } + } + + return $returnValue; + } + + /** + * COUNTBLANK. + * + * Counts the number of empty cells within the list of arguments + * + * Excel Function: + * COUNTBLANK(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return int + */ + public static function COUNTBLANK(...$args) + { + $returnValue = 0; + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + foreach ($aArgs as $arg) { + // Is it a blank cell? + if (($arg === null) || ((is_string($arg)) && ($arg == ''))) { + ++$returnValue; + } + } + + return $returnValue; + } + + /** + * COUNTIF. + * + * Counts the number of cells that contain numbers within the list of arguments + * + * Excel Function: + * COUNTIF(value1[,value2[, ...]],condition) + * + * @param mixed $aArgs Data values + * @param string $condition the criteria that defines which cells will be counted + * + * @return int + */ + public static function COUNTIF($aArgs, $condition) + { + $returnValue = 0; + + $aArgs = Functions::flattenArray($aArgs); + $condition = Functions::ifCondition($condition); + $conditionIsNumeric = strpos($condition, '"') === false; + // Loop through arguments + foreach ($aArgs as $arg) { + if (!is_numeric($arg)) { + if ($conditionIsNumeric) { + continue; + } + $arg = Calculation::wrapResult(strtoupper($arg)); + } elseif (!$conditionIsNumeric) { + continue; + } + $testCondition = '=' . $arg . $condition; + if (Calculation::getInstance()->_calculateFormulaValue($testCondition)) { + // Is it a value within our criteria + ++$returnValue; + } + } + + return $returnValue; + } + + /** + * COUNTIFS. + * + * Counts the number of cells that contain numbers within the list of arguments + * + * Excel Function: + * COUNTIFS(criteria_range1, criteria1, [criteria_range2, criteria2]…) + * + * @param mixed $args Criterias + * + * @return int + */ + public static function COUNTIFS(...$args) + { + $arrayList = $args; + + // Return value + $returnValue = 0; + + if (empty($arrayList)) { + return $returnValue; + } + + $aArgsArray = []; + $conditions = []; + + while (count($arrayList) > 0) { + $aArgsArray[] = Functions::flattenArray(array_shift($arrayList)); + $conditions[] = Functions::ifCondition(array_shift($arrayList)); + } + + // Loop through each arg and see if arguments and conditions are true + foreach (array_keys($aArgsArray[0]) as $index) { + $valid = true; + + foreach ($conditions as $cidx => $condition) { + $conditionIsNumeric = strpos($condition, '"') === false; + $arg = $aArgsArray[$cidx][$index]; + + // Loop through arguments + if (!is_numeric($arg)) { + if ($conditionIsNumeric) { + $valid = false; + + break; // if false found, don't need to check other conditions + } + $arg = Calculation::wrapResult(strtoupper($arg)); + } elseif (!$conditionIsNumeric) { + $valid = false; + + break; // if false found, don't need to check other conditions + } + $testCondition = '=' . $arg . $condition; + if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) { + // Is not a value within our criteria + $valid = false; + + break; // if false found, don't need to check other conditions + } + } + + if ($valid) { + ++$returnValue; + } + } + + // Return + return $returnValue; + } + + /** + * COVAR. + * + * Returns covariance, the average of the products of deviations for each data point pair. + * + * @param mixed $yValues array of mixed Data Series Y + * @param mixed $xValues array of mixed Data Series X + * + * @return float|string + */ + public static function COVAR($yValues, $xValues) + { + if (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return Functions::DIV0(); + } + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); + + return $bestFitLinear->getCovariance(); + } + + /** + * CRITBINOM. + * + * Returns the smallest value for which the cumulative binomial distribution is greater + * than or equal to a criterion value + * + * See https://support.microsoft.com/en-us/help/828117/ for details of the algorithm used + * + * @param float $trials number of Bernoulli trials + * @param float $probability probability of a success on each trial + * @param float $alpha criterion value + * + * @return int|string + * + * @TODO Warning. This implementation differs from the algorithm detailed on the MS + * web site in that $CumPGuessMinus1 = $CumPGuess - 1 rather than $CumPGuess - $PGuess + * This eliminates a potential endless loop error, but may have an adverse affect on the + * accuracy of the function (although all my tests have so far returned correct results). + */ + public static function CRITBINOM($trials, $probability, $alpha) + { + $trials = floor(Functions::flattenSingleValue($trials)); + $probability = Functions::flattenSingleValue($probability); + $alpha = Functions::flattenSingleValue($alpha); + + if ((is_numeric($trials)) && (is_numeric($probability)) && (is_numeric($alpha))) { + $trials = (int) $trials; + if ($trials < 0) { + return Functions::NAN(); + } elseif (($probability < 0.0) || ($probability > 1.0)) { + return Functions::NAN(); + } elseif (($alpha < 0.0) || ($alpha > 1.0)) { + return Functions::NAN(); + } + + if ($alpha <= 0.5) { + $t = sqrt(log(1 / ($alpha * $alpha))); + $trialsApprox = 0 - ($t + (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t)); + } else { + $t = sqrt(log(1 / (1 - $alpha) ** 2)); + $trialsApprox = $t - (2.515517 + 0.802853 * $t + 0.010328 * $t * $t) / (1 + 1.432788 * $t + 0.189269 * $t * $t + 0.001308 * $t * $t * $t); + } + + $Guess = floor($trials * $probability + $trialsApprox * sqrt($trials * $probability * (1 - $probability))); + if ($Guess < 0) { + $Guess = 0; + } elseif ($Guess > $trials) { + $Guess = $trials; + } + + $TotalUnscaledProbability = $UnscaledPGuess = $UnscaledCumPGuess = 0.0; + $EssentiallyZero = 10e-12; + + $m = floor($trials * $probability); + ++$TotalUnscaledProbability; + if ($m == $Guess) { + ++$UnscaledPGuess; + } + if ($m <= $Guess) { + ++$UnscaledCumPGuess; + } + + $PreviousValue = 1; + $Done = false; + $k = $m + 1; + while ((!$Done) && ($k <= $trials)) { + $CurrentValue = $PreviousValue * ($trials - $k + 1) * $probability / ($k * (1 - $probability)); + $TotalUnscaledProbability += $CurrentValue; + if ($k == $Guess) { + $UnscaledPGuess += $CurrentValue; + } + if ($k <= $Guess) { + $UnscaledCumPGuess += $CurrentValue; + } + if ($CurrentValue <= $EssentiallyZero) { + $Done = true; + } + $PreviousValue = $CurrentValue; + ++$k; + } + + $PreviousValue = 1; + $Done = false; + $k = $m - 1; + while ((!$Done) && ($k >= 0)) { + $CurrentValue = $PreviousValue * $k + 1 * (1 - $probability) / (($trials - $k) * $probability); + $TotalUnscaledProbability += $CurrentValue; + if ($k == $Guess) { + $UnscaledPGuess += $CurrentValue; + } + if ($k <= $Guess) { + $UnscaledCumPGuess += $CurrentValue; + } + if ($CurrentValue <= $EssentiallyZero) { + $Done = true; + } + $PreviousValue = $CurrentValue; + --$k; + } + + $PGuess = $UnscaledPGuess / $TotalUnscaledProbability; + $CumPGuess = $UnscaledCumPGuess / $TotalUnscaledProbability; + + $CumPGuessMinus1 = $CumPGuess - 1; + + while (true) { + if (($CumPGuessMinus1 < $alpha) && ($CumPGuess >= $alpha)) { + return $Guess; + } elseif (($CumPGuessMinus1 < $alpha) && ($CumPGuess < $alpha)) { + $PGuessPlus1 = $PGuess * ($trials - $Guess) * $probability / $Guess / (1 - $probability); + $CumPGuessMinus1 = $CumPGuess; + $CumPGuess = $CumPGuess + $PGuessPlus1; + $PGuess = $PGuessPlus1; + ++$Guess; + } elseif (($CumPGuessMinus1 >= $alpha) && ($CumPGuess >= $alpha)) { + $PGuessMinus1 = $PGuess * $Guess * (1 - $probability) / ($trials - $Guess + 1) / $probability; + $CumPGuess = $CumPGuessMinus1; + $CumPGuessMinus1 = $CumPGuessMinus1 - $PGuess; + $PGuess = $PGuessMinus1; + --$Guess; + } + } + } + + return Functions::VALUE(); + } + + /** + * DEVSQ. + * + * Returns the sum of squares of deviations of data points from their sample mean. + * + * Excel Function: + * DEVSQ(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function DEVSQ(...$args) + { + $aArgs = Functions::flattenArrayIndexed($args); + + // Return value + $returnValue = null; + + $aMean = self::AVERAGE($aArgs); + if ($aMean != Functions::DIV0()) { + $aCount = -1; + foreach ($aArgs as $k => $arg) { + // Is it a numeric value? + if ( + (is_bool($arg)) && + ((!Functions::isCellValue($k)) || + (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE)) + ) { + $arg = (int) $arg; + } + if ((is_numeric($arg)) && (!is_string($arg))) { + if ($returnValue === null) { + $returnValue = ($arg - $aMean) ** 2; + } else { + $returnValue += ($arg - $aMean) ** 2; + } + ++$aCount; + } + } + + // Return + if ($returnValue === null) { + return Functions::NAN(); + } + + return $returnValue; + } + + return Functions::NA(); + } + + /** + * EXPONDIST. + * + * Returns the exponential distribution. Use EXPONDIST to model the time between events, + * such as how long an automated bank teller takes to deliver cash. For example, you can + * use EXPONDIST to determine the probability that the process takes at most 1 minute. + * + * @param float $value Value of the function + * @param float $lambda The parameter value + * @param bool $cumulative + * + * @return float|string + */ + public static function EXPONDIST($value, $lambda, $cumulative) + { + $value = Functions::flattenSingleValue($value); + $lambda = Functions::flattenSingleValue($lambda); + $cumulative = Functions::flattenSingleValue($cumulative); + + if ((is_numeric($value)) && (is_numeric($lambda))) { + if (($value < 0) || ($lambda < 0)) { + return Functions::NAN(); + } + if ((is_numeric($cumulative)) || (is_bool($cumulative))) { + if ($cumulative) { + return 1 - exp(0 - $value * $lambda); + } + + return $lambda * exp(0 - $value * $lambda); + } + } + + return Functions::VALUE(); + } + + private static function betaFunction($a, $b) + { + return (self::gamma($a) * self::gamma($b)) / self::gamma($a + $b); + } + + private static function regularizedIncompleteBeta($value, $a, $b) + { + return self::incompleteBeta($value, $a, $b) / self::betaFunction($a, $b); + } + + /** + * F.DIST. + * + * Returns the F probability distribution. + * You can use this function to determine whether two data sets have different degrees of diversity. + * For example, you can examine the test scores of men and women entering high school, and determine + * if the variability in the females is different from that found in the males. + * + * @param float $value Value of the function + * @param int $u The numerator degrees of freedom + * @param int $v The denominator degrees of freedom + * @param bool $cumulative If cumulative is TRUE, F.DIST returns the cumulative distribution function; + * if FALSE, it returns the probability density function. + * + * @return float|string + */ + public static function FDIST2($value, $u, $v, $cumulative) + { + $value = Functions::flattenSingleValue($value); + $u = Functions::flattenSingleValue($u); + $v = Functions::flattenSingleValue($v); + $cumulative = Functions::flattenSingleValue($cumulative); + + if (is_numeric($value) && is_numeric($u) && is_numeric($v)) { + if ($value < 0 || $u < 1 || $v < 1) { + return Functions::NAN(); + } + + $cumulative = (bool) $cumulative; + $u = (int) $u; + $v = (int) $v; + + if ($cumulative) { + $adjustedValue = ($u * $value) / ($u * $value + $v); + + return self::incompleteBeta($adjustedValue, $u / 2, $v / 2); + } + + return (self::gamma(($v + $u) / 2) / (self::gamma($u / 2) * self::gamma($v / 2))) * + (($u / $v) ** ($u / 2)) * + (($value ** (($u - 2) / 2)) / ((1 + ($u / $v) * $value) ** (($u + $v) / 2))); + } + + return Functions::VALUE(); + } + + /** + * FISHER. + * + * Returns the Fisher transformation at x. This transformation produces a function that + * is normally distributed rather than skewed. Use this function to perform hypothesis + * testing on the correlation coefficient. + * + * @param float $value + * + * @return float|string + */ + public static function FISHER($value) + { + $value = Functions::flattenSingleValue($value); + + if (is_numeric($value)) { + if (($value <= -1) || ($value >= 1)) { + return Functions::NAN(); + } + + return 0.5 * log((1 + $value) / (1 - $value)); + } + + return Functions::VALUE(); + } + + /** + * FISHERINV. + * + * Returns the inverse of the Fisher transformation. Use this transformation when + * analyzing correlations between ranges or arrays of data. If y = FISHER(x), then + * FISHERINV(y) = x. + * + * @param float $value + * + * @return float|string + */ + public static function FISHERINV($value) + { + $value = Functions::flattenSingleValue($value); + + if (is_numeric($value)) { + return (exp(2 * $value) - 1) / (exp(2 * $value) + 1); + } + + return Functions::VALUE(); + } + + /** + * FORECAST. + * + * Calculates, or predicts, a future value by using existing values. The predicted value is a y-value for a given x-value. + * + * @param float $xValue Value of X for which we want to find Y + * @param mixed $yValues array of mixed Data Series Y + * @param mixed $xValues of mixed Data Series X + * + * @return bool|float|string + */ + public static function FORECAST($xValue, $yValues, $xValues) + { + $xValue = Functions::flattenSingleValue($xValue); + if (!is_numeric($xValue)) { + return Functions::VALUE(); + } elseif (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return Functions::DIV0(); + } + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); + + return $bestFitLinear->getValueOfYForX($xValue); + } + + /** + * GAMMA. + * + * Return the gamma function value. + * + * @param float $value + * + * @return float|string The result, or a string containing an error + */ + public static function GAMMAFunction($value) + { + $value = Functions::flattenSingleValue($value); + if (!is_numeric($value)) { + return Functions::VALUE(); + } elseif ((((int) $value) == ((float) $value)) && $value <= 0.0) { + return Functions::NAN(); + } + + return self::gamma($value); + } + + /** + * GAMMADIST. + * + * Returns the gamma distribution. + * + * @param float $value Value at which you want to evaluate the distribution + * @param float $a Parameter to the distribution + * @param float $b Parameter to the distribution + * @param bool $cumulative + * + * @return float|string + */ + public static function GAMMADIST($value, $a, $b, $cumulative) + { + $value = Functions::flattenSingleValue($value); + $a = Functions::flattenSingleValue($a); + $b = Functions::flattenSingleValue($b); + + if ((is_numeric($value)) && (is_numeric($a)) && (is_numeric($b))) { + if (($value < 0) || ($a <= 0) || ($b <= 0)) { + return Functions::NAN(); + } + if ((is_numeric($cumulative)) || (is_bool($cumulative))) { + if ($cumulative) { + return self::incompleteGamma($a, $value / $b) / self::gamma($a); + } + + return (1 / ($b ** $a * self::gamma($a))) * $value ** ($a - 1) * exp(0 - ($value / $b)); + } + } + + return Functions::VALUE(); + } + + /** + * GAMMAINV. + * + * Returns the inverse of the Gamma distribution. + * + * @param float $probability Probability at which you want to evaluate the distribution + * @param float $alpha Parameter to the distribution + * @param float $beta Parameter to the distribution + * + * @return float|string + */ + public static function GAMMAINV($probability, $alpha, $beta) + { + $probability = Functions::flattenSingleValue($probability); + $alpha = Functions::flattenSingleValue($alpha); + $beta = Functions::flattenSingleValue($beta); + + if ((is_numeric($probability)) && (is_numeric($alpha)) && (is_numeric($beta))) { + if (($alpha <= 0) || ($beta <= 0) || ($probability < 0) || ($probability > 1)) { + return Functions::NAN(); + } + + $xLo = 0; + $xHi = $alpha * $beta * 5; + + $x = $xNew = 1; + $dx = 1024; + $i = 0; + + while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) { + // Apply Newton-Raphson step + $error = self::GAMMADIST($x, $alpha, $beta, true) - $probability; + if ($error < 0.0) { + $xLo = $x; + } else { + $xHi = $x; + } + $pdf = self::GAMMADIST($x, $alpha, $beta, false); + // Avoid division by zero + if ($pdf != 0.0) { + $dx = $error / $pdf; + $xNew = $x - $dx; + } + // If the NR fails to converge (which for example may be the + // case if the initial guess is too rough) we apply a bisection + // step to determine a more narrow interval around the root. + if (($xNew < $xLo) || ($xNew > $xHi) || ($pdf == 0.0)) { + $xNew = ($xLo + $xHi) / 2; + $dx = $xNew - $x; + } + $x = $xNew; + } + if ($i == self::MAX_ITERATIONS) { + return Functions::NA(); + } + + return $x; + } + + return Functions::VALUE(); + } + + /** + * GAMMALN. + * + * Returns the natural logarithm of the gamma function. + * + * @param float $value + * + * @return float|string + */ + public static function GAMMALN($value) + { + $value = Functions::flattenSingleValue($value); + + if (is_numeric($value)) { + if ($value <= 0) { + return Functions::NAN(); + } + + return log(self::gamma($value)); + } + + return Functions::VALUE(); + } + + /** + * GAUSS. + * + * Calculates the probability that a member of a standard normal population will fall between + * the mean and z standard deviations from the mean. + * + * @param float $value + * + * @return float|string The result, or a string containing an error + */ + public static function GAUSS($value) + { + $value = Functions::flattenSingleValue($value); + if (!is_numeric($value)) { + return Functions::VALUE(); + } + + return self::NORMDIST($value, 0, 1, true) - 0.5; + } + + /** + * GEOMEAN. + * + * Returns the geometric mean of an array or range of positive data. For example, you + * can use GEOMEAN to calculate average growth rate given compound interest with + * variable rates. + * + * Excel Function: + * GEOMEAN(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function GEOMEAN(...$args) + { + $aArgs = Functions::flattenArray($args); + + $aMean = MathTrig::PRODUCT($aArgs); + if (is_numeric($aMean) && ($aMean > 0)) { + $aCount = self::COUNT($aArgs); + if (self::MIN($aArgs) > 0) { + return $aMean ** (1 / $aCount); + } + } + + return Functions::NAN(); + } + + /** + * GROWTH. + * + * Returns values along a predicted exponential Trend + * + * @param mixed[] $yValues Data Series Y + * @param mixed[] $xValues Data Series X + * @param mixed[] $newValues Values of X for which we want to find Y + * @param bool $const a logical value specifying whether to force the intersect to equal 0 + * + * @return array of float + */ + public static function GROWTH($yValues, $xValues = [], $newValues = [], $const = true) + { + $yValues = Functions::flattenArray($yValues); + $xValues = Functions::flattenArray($xValues); + $newValues = Functions::flattenArray($newValues); + $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const); + + $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const); + if (empty($newValues)) { + $newValues = $bestFitExponential->getXValues(); + } + + $returnArray = []; + foreach ($newValues as $xValue) { + $returnArray[0][] = $bestFitExponential->getValueOfYForX($xValue); + } + + return $returnArray; + } + + /** + * HARMEAN. + * + * Returns the harmonic mean of a data set. The harmonic mean is the reciprocal of the + * arithmetic mean of reciprocals. + * + * Excel Function: + * HARMEAN(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function HARMEAN(...$args) + { + // Return value + $returnValue = 0; + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + if (self::MIN($aArgs) < 0) { + return Functions::NAN(); + } + $aCount = 0; + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + if ($arg <= 0) { + return Functions::NAN(); + } + $returnValue += (1 / $arg); + ++$aCount; + } + } + + // Return + if ($aCount > 0) { + return 1 / ($returnValue / $aCount); + } + + return Functions::NA(); + } + + /** + * HYPGEOMDIST. + * + * Returns the hypergeometric distribution. HYPGEOMDIST returns the probability of a given number of + * sample successes, given the sample size, population successes, and population size. + * + * @param float $sampleSuccesses Number of successes in the sample + * @param float $sampleNumber Size of the sample + * @param float $populationSuccesses Number of successes in the population + * @param float $populationNumber Population size + * + * @return float|string + */ + public static function HYPGEOMDIST($sampleSuccesses, $sampleNumber, $populationSuccesses, $populationNumber) + { + $sampleSuccesses = Functions::flattenSingleValue($sampleSuccesses); + $sampleNumber = Functions::flattenSingleValue($sampleNumber); + $populationSuccesses = Functions::flattenSingleValue($populationSuccesses); + $populationNumber = Functions::flattenSingleValue($populationNumber); + + if ((is_numeric($sampleSuccesses)) && (is_numeric($sampleNumber)) && (is_numeric($populationSuccesses)) && (is_numeric($populationNumber))) { + $sampleSuccesses = floor($sampleSuccesses); + $sampleNumber = floor($sampleNumber); + $populationSuccesses = floor($populationSuccesses); + $populationNumber = floor($populationNumber); + + if (($sampleSuccesses < 0) || ($sampleSuccesses > $sampleNumber) || ($sampleSuccesses > $populationSuccesses)) { + return Functions::NAN(); + } + if (($sampleNumber <= 0) || ($sampleNumber > $populationNumber)) { + return Functions::NAN(); + } + if (($populationSuccesses <= 0) || ($populationSuccesses > $populationNumber)) { + return Functions::NAN(); + } + + return MathTrig::COMBIN($populationSuccesses, $sampleSuccesses) * + MathTrig::COMBIN($populationNumber - $populationSuccesses, $sampleNumber - $sampleSuccesses) / + MathTrig::COMBIN($populationNumber, $sampleNumber); + } + + return Functions::VALUE(); + } + + /** + * INTERCEPT. + * + * Calculates the point at which a line will intersect the y-axis by using existing x-values and y-values. + * + * @param mixed[] $yValues Data Series Y + * @param mixed[] $xValues Data Series X + * + * @return float|string + */ + public static function INTERCEPT($yValues, $xValues) + { + if (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return Functions::DIV0(); + } + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); + + return $bestFitLinear->getIntersect(); + } + + /** + * KURT. + * + * Returns the kurtosis of a data set. Kurtosis characterizes the relative peakedness + * or flatness of a distribution compared with the normal distribution. Positive + * kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a + * relatively flat distribution. + * + * @param array ...$args Data Series + * + * @return float|string + */ + public static function KURT(...$args) + { + $aArgs = Functions::flattenArrayIndexed($args); + $mean = self::AVERAGE($aArgs); + $stdDev = self::STDEV($aArgs); + + if ($stdDev > 0) { + $count = $summer = 0; + // Loop through arguments + foreach ($aArgs as $k => $arg) { + if ( + (is_bool($arg)) && + (!Functions::isMatrixValue($k)) + ) { + } else { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $summer += (($arg - $mean) / $stdDev) ** 4; + ++$count; + } + } + } + + // Return + if ($count > 3) { + return $summer * ($count * ($count + 1) / (($count - 1) * ($count - 2) * ($count - 3))) - (3 * ($count - 1) ** 2 / (($count - 2) * ($count - 3))); + } + } + + return Functions::DIV0(); + } + + /** + * LARGE. + * + * Returns the nth largest value in a data set. You can use this function to + * select a value based on its relative standing. + * + * Excel Function: + * LARGE(value1[,value2[, ...]],entry) + * + * @param mixed $args Data values + * + * @return float|string The result, or a string containing an error + */ + public static function LARGE(...$args) + { + $aArgs = Functions::flattenArray($args); + $entry = array_pop($aArgs); + + if ((is_numeric($entry)) && (!is_string($entry))) { + $entry = (int) floor($entry); + + // Calculate + $mArgs = []; + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $mArgs[] = $arg; + } + } + $count = self::COUNT($mArgs); + --$entry; + if (($entry < 0) || ($entry >= $count) || ($count == 0)) { + return Functions::NAN(); + } + rsort($mArgs); + + return $mArgs[$entry]; + } + + return Functions::VALUE(); + } + + /** + * LINEST. + * + * Calculates the statistics for a line by using the "least squares" method to calculate a straight line that best fits your data, + * and then returns an array that describes the line. + * + * @param mixed[] $yValues Data Series Y + * @param null|mixed[] $xValues Data Series X + * @param bool $const a logical value specifying whether to force the intersect to equal 0 + * @param bool $stats a logical value specifying whether to return additional regression statistics + * + * @return array|int|string The result, or a string containing an error + */ + public static function LINEST($yValues, $xValues = null, $const = true, $stats = false) + { + $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const); + $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats); + if ($xValues === null) { + $xValues = range(1, count(Functions::flattenArray($yValues))); + } + + if (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return 0; + } + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const); + if ($stats) { + return [ + [ + $bestFitLinear->getSlope(), + $bestFitLinear->getSlopeSE(), + $bestFitLinear->getGoodnessOfFit(), + $bestFitLinear->getF(), + $bestFitLinear->getSSRegression(), + ], + [ + $bestFitLinear->getIntersect(), + $bestFitLinear->getIntersectSE(), + $bestFitLinear->getStdevOfResiduals(), + $bestFitLinear->getDFResiduals(), + $bestFitLinear->getSSResiduals(), + ], + ]; + } + + return [ + $bestFitLinear->getSlope(), + $bestFitLinear->getIntersect(), + ]; + } + + /** + * LOGEST. + * + * Calculates an exponential curve that best fits the X and Y data series, + * and then returns an array that describes the line. + * + * @param mixed[] $yValues Data Series Y + * @param null|mixed[] $xValues Data Series X + * @param bool $const a logical value specifying whether to force the intersect to equal 0 + * @param bool $stats a logical value specifying whether to return additional regression statistics + * + * @return array|int|string The result, or a string containing an error + */ + public static function LOGEST($yValues, $xValues = null, $const = true, $stats = false) + { + $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const); + $stats = ($stats === null) ? false : (bool) Functions::flattenSingleValue($stats); + if ($xValues === null) { + $xValues = range(1, count(Functions::flattenArray($yValues))); + } + + if (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + foreach ($yValues as $value) { + if ($value <= 0.0) { + return Functions::NAN(); + } + } + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return 1; + } + + $bestFitExponential = Trend::calculate(Trend::TREND_EXPONENTIAL, $yValues, $xValues, $const); + if ($stats) { + return [ + [ + $bestFitExponential->getSlope(), + $bestFitExponential->getSlopeSE(), + $bestFitExponential->getGoodnessOfFit(), + $bestFitExponential->getF(), + $bestFitExponential->getSSRegression(), + ], + [ + $bestFitExponential->getIntersect(), + $bestFitExponential->getIntersectSE(), + $bestFitExponential->getStdevOfResiduals(), + $bestFitExponential->getDFResiduals(), + $bestFitExponential->getSSResiduals(), + ], + ]; + } + + return [ + $bestFitExponential->getSlope(), + $bestFitExponential->getIntersect(), + ]; + } + + /** + * LOGINV. + * + * Returns the inverse of the normal cumulative distribution + * + * @param float $probability + * @param float $mean + * @param float $stdDev + * + * @return float|string The result, or a string containing an error + * + * @TODO Try implementing P J Acklam's refinement algorithm for greater + * accuracy if I can get my head round the mathematics + * (as described at) http://home.online.no/~pjacklam/notes/invnorm/ + */ + public static function LOGINV($probability, $mean, $stdDev) + { + $probability = Functions::flattenSingleValue($probability); + $mean = Functions::flattenSingleValue($mean); + $stdDev = Functions::flattenSingleValue($stdDev); + + if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { + if (($probability < 0) || ($probability > 1) || ($stdDev <= 0)) { + return Functions::NAN(); + } + + return exp($mean + $stdDev * self::NORMSINV($probability)); + } + + return Functions::VALUE(); + } + + /** + * LOGNORMDIST. + * + * Returns the cumulative lognormal distribution of x, where ln(x) is normally distributed + * with parameters mean and standard_dev. + * + * @param float $value + * @param float $mean + * @param float $stdDev + * + * @return float|string The result, or a string containing an error + */ + public static function LOGNORMDIST($value, $mean, $stdDev) + { + $value = Functions::flattenSingleValue($value); + $mean = Functions::flattenSingleValue($mean); + $stdDev = Functions::flattenSingleValue($stdDev); + + if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { + if (($value <= 0) || ($stdDev <= 0)) { + return Functions::NAN(); + } + + return self::NORMSDIST((log($value) - $mean) / $stdDev); + } + + return Functions::VALUE(); + } + + /** + * LOGNORM.DIST. + * + * Returns the lognormal distribution of x, where ln(x) is normally distributed + * with parameters mean and standard_dev. + * + * @param float $value + * @param float $mean + * @param float $stdDev + * @param bool $cumulative + * + * @return float|string The result, or a string containing an error + */ + public static function LOGNORMDIST2($value, $mean, $stdDev, $cumulative = false) + { + $value = Functions::flattenSingleValue($value); + $mean = Functions::flattenSingleValue($mean); + $stdDev = Functions::flattenSingleValue($stdDev); + $cumulative = (bool) Functions::flattenSingleValue($cumulative); + + if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { + if (($value <= 0) || ($stdDev <= 0)) { + return Functions::NAN(); + } + + if ($cumulative === true) { + return self::NORMSDIST2((log($value) - $mean) / $stdDev, true); + } + + return (1 / (sqrt(2 * M_PI) * $stdDev * $value)) * + exp(0 - ((log($value) - $mean) ** 2 / (2 * $stdDev ** 2))); + } + + return Functions::VALUE(); + } + + /** + * MAX. + * + * MAX returns the value of the element of the values passed that has the highest value, + * with negative numbers considered smaller than positive numbers. + * + * Excel Function: + * MAX(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float + */ + public static function MAX(...$args) + { + $returnValue = null; + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + if (($returnValue === null) || ($arg > $returnValue)) { + $returnValue = $arg; + } + } + } + + if ($returnValue === null) { + return 0; + } + + return $returnValue; + } + + /** + * MAXA. + * + * Returns the greatest value in a list of arguments, including numbers, text, and logical values + * + * Excel Function: + * MAXA(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float + */ + public static function MAXA(...$args) + { + $returnValue = null; + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { + if (is_bool($arg)) { + $arg = (int) $arg; + } elseif (is_string($arg)) { + $arg = 0; + } + if (($returnValue === null) || ($arg > $returnValue)) { + $returnValue = $arg; + } + } + } + + if ($returnValue === null) { + return 0; + } + + return $returnValue; + } + + /** + * MAXIFS. + * + * Counts the maximum value within a range of cells that contain numbers within the list of arguments + * + * Excel Function: + * MAXIFS(max_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...) + * + * @param mixed $args Data range and criterias + * + * @return float + */ + public static function MAXIFS(...$args) + { + $arrayList = $args; + + // Return value + $returnValue = null; + + $maxArgs = Functions::flattenArray(array_shift($arrayList)); + $aArgsArray = []; + $conditions = []; + + while (count($arrayList) > 0) { + $aArgsArray[] = Functions::flattenArray(array_shift($arrayList)); + $conditions[] = Functions::ifCondition(array_shift($arrayList)); + } + + // Loop through each arg and see if arguments and conditions are true + foreach ($maxArgs as $index => $value) { + $valid = true; + + foreach ($conditions as $cidx => $condition) { + $arg = $aArgsArray[$cidx][$index]; + + // Loop through arguments + if (!is_numeric($arg)) { + $arg = Calculation::wrapResult(strtoupper($arg)); + } + $testCondition = '=' . $arg . $condition; + if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) { + // Is not a value within our criteria + $valid = false; + + break; // if false found, don't need to check other conditions + } + } + + if ($valid) { + $returnValue = $returnValue === null ? $value : max($value, $returnValue); + } + } + + // Return + return $returnValue; + } + + /** + * MEDIAN. + * + * Returns the median of the given numbers. The median is the number in the middle of a set of numbers. + * + * Excel Function: + * MEDIAN(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string The result, or a string containing an error + */ + public static function MEDIAN(...$args) + { + $returnValue = Functions::NAN(); + + $mArgs = []; + // Loop through arguments + $aArgs = Functions::flattenArray($args); + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $mArgs[] = $arg; + } + } + + $mValueCount = count($mArgs); + if ($mValueCount > 0) { + sort($mArgs, SORT_NUMERIC); + $mValueCount = $mValueCount / 2; + if ($mValueCount == floor($mValueCount)) { + $returnValue = ($mArgs[$mValueCount--] + $mArgs[$mValueCount]) / 2; + } else { + $mValueCount = floor($mValueCount); + $returnValue = $mArgs[$mValueCount]; + } + } + + return $returnValue; + } + + /** + * MIN. + * + * MIN returns the value of the element of the values passed that has the smallest value, + * with negative numbers considered smaller than positive numbers. + * + * Excel Function: + * MIN(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float + */ + public static function MIN(...$args) + { + $returnValue = null; + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + if (($returnValue === null) || ($arg < $returnValue)) { + $returnValue = $arg; + } + } + } + + if ($returnValue === null) { + return 0; + } + + return $returnValue; + } + + /** + * MINA. + * + * Returns the smallest value in a list of arguments, including numbers, text, and logical values + * + * Excel Function: + * MINA(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float + */ + public static function MINA(...$args) + { + $returnValue = null; + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) && ($arg != '')))) { + if (is_bool($arg)) { + $arg = (int) $arg; + } elseif (is_string($arg)) { + $arg = 0; + } + if (($returnValue === null) || ($arg < $returnValue)) { + $returnValue = $arg; + } + } + } + + if ($returnValue === null) { + return 0; + } + + return $returnValue; + } + + /** + * MINIFS. + * + * Returns the minimum value within a range of cells that contain numbers within the list of arguments + * + * Excel Function: + * MINIFS(min_range, criteria_range1, criteria1, [criteria_range2, criteria2], ...) + * + * @param mixed $args Data range and criterias + * + * @return float + */ + public static function MINIFS(...$args) + { + $arrayList = $args; + + // Return value + $returnValue = null; + + $minArgs = Functions::flattenArray(array_shift($arrayList)); + $aArgsArray = []; + $conditions = []; + + while (count($arrayList) > 0) { + $aArgsArray[] = Functions::flattenArray(array_shift($arrayList)); + $conditions[] = Functions::ifCondition(array_shift($arrayList)); + } + + // Loop through each arg and see if arguments and conditions are true + foreach ($minArgs as $index => $value) { + $valid = true; + + foreach ($conditions as $cidx => $condition) { + $arg = $aArgsArray[$cidx][$index]; + + // Loop through arguments + if (!is_numeric($arg)) { + $arg = Calculation::wrapResult(strtoupper($arg)); + } + $testCondition = '=' . $arg . $condition; + if (!Calculation::getInstance()->_calculateFormulaValue($testCondition)) { + // Is not a value within our criteria + $valid = false; + + break; // if false found, don't need to check other conditions + } + } + + if ($valid) { + $returnValue = $returnValue === null ? $value : min($value, $returnValue); + } + } + + // Return + return $returnValue; + } + + // + // Special variant of array_count_values that isn't limited to strings and integers, + // but can work with floating point numbers as values + // + private static function modeCalc($data) + { + $frequencyArray = []; + $index = 0; + $maxfreq = 0; + $maxfreqkey = ''; + $maxfreqdatum = ''; + foreach ($data as $datum) { + $found = false; + ++$index; + foreach ($frequencyArray as $key => $value) { + if ((string) $value['value'] == (string) $datum) { + ++$frequencyArray[$key]['frequency']; + $freq = $frequencyArray[$key]['frequency']; + if ($freq > $maxfreq) { + $maxfreq = $freq; + $maxfreqkey = $key; + $maxfreqdatum = $datum; + } elseif ($freq == $maxfreq) { + if ($frequencyArray[$key]['index'] < $frequencyArray[$maxfreqkey]['index']) { + $maxfreqkey = $key; + $maxfreqdatum = $datum; + } + } + $found = true; + + break; + } + } + if (!$found) { + $frequencyArray[] = [ + 'value' => $datum, + 'frequency' => 1, + 'index' => $index, + ]; + } + } + + if ($maxfreq <= 1) { + return Functions::NA(); + } + + return $maxfreqdatum; + } + + /** + * MODE. + * + * Returns the most frequently occurring, or repetitive, value in an array or range of data + * + * Excel Function: + * MODE(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string The result, or a string containing an error + */ + public static function MODE(...$args) + { + $returnValue = Functions::NA(); + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + + $mArgs = []; + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $mArgs[] = $arg; + } + } + + if (!empty($mArgs)) { + return self::modeCalc($mArgs); + } + + return $returnValue; + } + + /** + * NEGBINOMDIST. + * + * Returns the negative binomial distribution. NEGBINOMDIST returns the probability that + * there will be number_f failures before the number_s-th success, when the constant + * probability of a success is probability_s. This function is similar to the binomial + * distribution, except that the number of successes is fixed, and the number of trials is + * variable. Like the binomial, trials are assumed to be independent. + * + * @param float $failures Number of Failures + * @param float $successes Threshold number of Successes + * @param float $probability Probability of success on each trial + * + * @return float|string The result, or a string containing an error + */ + public static function NEGBINOMDIST($failures, $successes, $probability) + { + $failures = floor(Functions::flattenSingleValue($failures)); + $successes = floor(Functions::flattenSingleValue($successes)); + $probability = Functions::flattenSingleValue($probability); + + if ((is_numeric($failures)) && (is_numeric($successes)) && (is_numeric($probability))) { + if (($failures < 0) || ($successes < 1)) { + return Functions::NAN(); + } elseif (($probability < 0) || ($probability > 1)) { + return Functions::NAN(); + } + if (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_GNUMERIC) { + if (($failures + $successes - 1) <= 0) { + return Functions::NAN(); + } + } + + return (MathTrig::COMBIN($failures + $successes - 1, $successes - 1)) * ($probability ** $successes) * ((1 - $probability) ** $failures); + } + + return Functions::VALUE(); + } + + /** + * NORMDIST. + * + * Returns the normal distribution for the specified mean and standard deviation. This + * function has a very wide range of applications in statistics, including hypothesis + * testing. + * + * @param float $value + * @param float $mean Mean Value + * @param float $stdDev Standard Deviation + * @param bool $cumulative + * + * @return float|string The result, or a string containing an error + */ + public static function NORMDIST($value, $mean, $stdDev, $cumulative) + { + $value = Functions::flattenSingleValue($value); + $mean = Functions::flattenSingleValue($mean); + $stdDev = Functions::flattenSingleValue($stdDev); + + if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { + if ($stdDev < 0) { + return Functions::NAN(); + } + if ((is_numeric($cumulative)) || (is_bool($cumulative))) { + if ($cumulative) { + return 0.5 * (1 + Engineering::erfVal(($value - $mean) / ($stdDev * sqrt(2)))); + } + + return (1 / (self::SQRT2PI * $stdDev)) * exp(0 - (($value - $mean) ** 2 / (2 * ($stdDev * $stdDev)))); + } + } + + return Functions::VALUE(); + } + + /** + * NORMINV. + * + * Returns the inverse of the normal cumulative distribution for the specified mean and standard deviation. + * + * @param float $probability + * @param float $mean Mean Value + * @param float $stdDev Standard Deviation + * + * @return float|string The result, or a string containing an error + */ + public static function NORMINV($probability, $mean, $stdDev) + { + $probability = Functions::flattenSingleValue($probability); + $mean = Functions::flattenSingleValue($mean); + $stdDev = Functions::flattenSingleValue($stdDev); + + if ((is_numeric($probability)) && (is_numeric($mean)) && (is_numeric($stdDev))) { + if (($probability < 0) || ($probability > 1)) { + return Functions::NAN(); + } + if ($stdDev < 0) { + return Functions::NAN(); + } + + return (self::inverseNcdf($probability) * $stdDev) + $mean; + } + + return Functions::VALUE(); + } + + /** + * NORMSDIST. + * + * Returns the standard normal cumulative distribution function. The distribution has + * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a + * table of standard normal curve areas. + * + * @param float $value + * + * @return float|string The result, or a string containing an error + */ + public static function NORMSDIST($value) + { + $value = Functions::flattenSingleValue($value); + if (!is_numeric($value)) { + return Functions::VALUE(); + } + + return self::NORMDIST($value, 0, 1, true); + } + + /** + * NORM.S.DIST. + * + * Returns the standard normal cumulative distribution function. The distribution has + * a mean of 0 (zero) and a standard deviation of one. Use this function in place of a + * table of standard normal curve areas. + * + * @param float $value + * @param bool $cumulative + * + * @return float|string The result, or a string containing an error + */ + public static function NORMSDIST2($value, $cumulative) + { + $value = Functions::flattenSingleValue($value); + if (!is_numeric($value)) { + return Functions::VALUE(); + } + $cumulative = (bool) Functions::flattenSingleValue($cumulative); + + return self::NORMDIST($value, 0, 1, $cumulative); + } + + /** + * NORMSINV. + * + * Returns the inverse of the standard normal cumulative distribution + * + * @param float $value + * + * @return float|string The result, or a string containing an error + */ + public static function NORMSINV($value) + { + return self::NORMINV($value, 0, 1); + } + + /** + * PERCENTILE. + * + * Returns the nth percentile of values in a range.. + * + * Excel Function: + * PERCENTILE(value1[,value2[, ...]],entry) + * + * @param mixed $args Data values + * + * @return float|string The result, or a string containing an error + */ + public static function PERCENTILE(...$args) + { + $aArgs = Functions::flattenArray($args); + + // Calculate + $entry = array_pop($aArgs); + + if ((is_numeric($entry)) && (!is_string($entry))) { + if (($entry < 0) || ($entry > 1)) { + return Functions::NAN(); + } + $mArgs = []; + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $mArgs[] = $arg; + } + } + $mValueCount = count($mArgs); + if ($mValueCount > 0) { + sort($mArgs); + $count = self::COUNT($mArgs); + $index = $entry * ($count - 1); + $iBase = floor($index); + if ($index == $iBase) { + return $mArgs[$index]; + } + $iNext = $iBase + 1; + $iProportion = $index - $iBase; + + return $mArgs[$iBase] + (($mArgs[$iNext] - $mArgs[$iBase]) * $iProportion); + } + } + + return Functions::VALUE(); + } + + /** + * PERCENTRANK. + * + * Returns the rank of a value in a data set as a percentage of the data set. + * + * @param float[] $valueSet An array of, or a reference to, a list of numbers + * @param int $value the number whose rank you want to find + * @param int $significance the number of significant digits for the returned percentage value + * + * @return float|string (string if result is an error) + */ + public static function PERCENTRANK($valueSet, $value, $significance = 3) + { + $valueSet = Functions::flattenArray($valueSet); + $value = Functions::flattenSingleValue($value); + $significance = ($significance === null) ? 3 : (int) Functions::flattenSingleValue($significance); + + foreach ($valueSet as $key => $valueEntry) { + if (!is_numeric($valueEntry)) { + unset($valueSet[$key]); + } + } + sort($valueSet, SORT_NUMERIC); + $valueCount = count($valueSet); + if ($valueCount == 0) { + return Functions::NAN(); + } + + $valueAdjustor = $valueCount - 1; + if (($value < $valueSet[0]) || ($value > $valueSet[$valueAdjustor])) { + return Functions::NA(); + } + + $pos = array_search($value, $valueSet); + if ($pos === false) { + $pos = 0; + $testValue = $valueSet[0]; + while ($testValue < $value) { + $testValue = $valueSet[++$pos]; + } + --$pos; + $pos += (($value - $valueSet[$pos]) / ($testValue - $valueSet[$pos])); + } + + return round($pos / $valueAdjustor, $significance); + } + + /** + * PERMUT. + * + * Returns the number of permutations for a given number of objects that can be + * selected from number objects. A permutation is any set or subset of objects or + * events where internal order is significant. Permutations are different from + * combinations, for which the internal order is not significant. Use this function + * for lottery-style probability calculations. + * + * @param int $numObjs Number of different objects + * @param int $numInSet Number of objects in each permutation + * + * @return int|string Number of permutations, or a string containing an error + */ + public static function PERMUT($numObjs, $numInSet) + { + $numObjs = Functions::flattenSingleValue($numObjs); + $numInSet = Functions::flattenSingleValue($numInSet); + + if ((is_numeric($numObjs)) && (is_numeric($numInSet))) { + $numInSet = floor($numInSet); + if ($numObjs < $numInSet) { + return Functions::NAN(); + } + + return round(MathTrig::FACT($numObjs) / MathTrig::FACT($numObjs - $numInSet)); + } + + return Functions::VALUE(); + } + + /** + * POISSON. + * + * Returns the Poisson distribution. A common application of the Poisson distribution + * is predicting the number of events over a specific time, such as the number of + * cars arriving at a toll plaza in 1 minute. + * + * @param float $value + * @param float $mean Mean Value + * @param bool $cumulative + * + * @return float|string The result, or a string containing an error + */ + public static function POISSON($value, $mean, $cumulative) + { + $value = Functions::flattenSingleValue($value); + $mean = Functions::flattenSingleValue($mean); + + if ((is_numeric($value)) && (is_numeric($mean))) { + if (($value < 0) || ($mean <= 0)) { + return Functions::NAN(); + } + if ((is_numeric($cumulative)) || (is_bool($cumulative))) { + if ($cumulative) { + $summer = 0; + $floor = floor($value); + for ($i = 0; $i <= $floor; ++$i) { + $summer += $mean ** $i / MathTrig::FACT($i); + } + + return exp(0 - $mean) * $summer; + } + + return (exp(0 - $mean) * $mean ** $value) / MathTrig::FACT($value); + } + } + + return Functions::VALUE(); + } + + /** + * QUARTILE. + * + * Returns the quartile of a data set. + * + * Excel Function: + * QUARTILE(value1[,value2[, ...]],entry) + * + * @param mixed $args Data values + * + * @return float|string The result, or a string containing an error + */ + public static function QUARTILE(...$args) + { + $aArgs = Functions::flattenArray($args); + + // Calculate + $entry = floor(array_pop($aArgs)); + + if ((is_numeric($entry)) && (!is_string($entry))) { + $entry /= 4; + if (($entry < 0) || ($entry > 1)) { + return Functions::NAN(); + } + + return self::PERCENTILE($aArgs, $entry); + } + + return Functions::VALUE(); + } + + /** + * RANK. + * + * Returns the rank of a number in a list of numbers. + * + * @param int $value the number whose rank you want to find + * @param float[] $valueSet An array of, or a reference to, a list of numbers + * @param int $order Order to sort the values in the value set + * + * @return float|string The result, or a string containing an error + */ + public static function RANK($value, $valueSet, $order = 0) + { + $value = Functions::flattenSingleValue($value); + $valueSet = Functions::flattenArray($valueSet); + $order = ($order === null) ? 0 : (int) Functions::flattenSingleValue($order); + + foreach ($valueSet as $key => $valueEntry) { + if (!is_numeric($valueEntry)) { + unset($valueSet[$key]); + } + } + + if ($order == 0) { + rsort($valueSet, SORT_NUMERIC); + } else { + sort($valueSet, SORT_NUMERIC); + } + $pos = array_search($value, $valueSet); + if ($pos === false) { + return Functions::NA(); + } + + return ++$pos; + } + + /** + * RSQ. + * + * Returns the square of the Pearson product moment correlation coefficient through data points in known_y's and known_x's. + * + * @param mixed[] $yValues Data Series Y + * @param mixed[] $xValues Data Series X + * + * @return float|string The result, or a string containing an error + */ + public static function RSQ($yValues, $xValues) + { + if (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return Functions::DIV0(); + } + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); + + return $bestFitLinear->getGoodnessOfFit(); + } + + /** + * SKEW. + * + * Returns the skewness of a distribution. Skewness characterizes the degree of asymmetry + * of a distribution around its mean. Positive skewness indicates a distribution with an + * asymmetric tail extending toward more positive values. Negative skewness indicates a + * distribution with an asymmetric tail extending toward more negative values. + * + * @param array ...$args Data Series + * + * @return float|string The result, or a string containing an error + */ + public static function SKEW(...$args) + { + $aArgs = Functions::flattenArrayIndexed($args); + $mean = self::AVERAGE($aArgs); + $stdDev = self::STDEV($aArgs); + + $count = $summer = 0; + // Loop through arguments + foreach ($aArgs as $k => $arg) { + if ( + (is_bool($arg)) && + (!Functions::isMatrixValue($k)) + ) { + } else { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $summer += (($arg - $mean) / $stdDev) ** 3; + ++$count; + } + } + } + + if ($count > 2) { + return $summer * ($count / (($count - 1) * ($count - 2))); + } + + return Functions::DIV0(); + } + + /** + * SLOPE. + * + * Returns the slope of the linear regression line through data points in known_y's and known_x's. + * + * @param mixed[] $yValues Data Series Y + * @param mixed[] $xValues Data Series X + * + * @return float|string The result, or a string containing an error + */ + public static function SLOPE($yValues, $xValues) + { + if (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return Functions::DIV0(); + } + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); + + return $bestFitLinear->getSlope(); + } + + /** + * SMALL. + * + * Returns the nth smallest value in a data set. You can use this function to + * select a value based on its relative standing. + * + * Excel Function: + * SMALL(value1[,value2[, ...]],entry) + * + * @param mixed $args Data values + * + * @return float|string The result, or a string containing an error + */ + public static function SMALL(...$args) + { + $aArgs = Functions::flattenArray($args); + + // Calculate + $entry = array_pop($aArgs); + + if ((is_numeric($entry)) && (!is_string($entry))) { + $entry = (int) floor($entry); + + $mArgs = []; + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $mArgs[] = $arg; + } + } + $count = self::COUNT($mArgs); + --$entry; + if (($entry < 0) || ($entry >= $count) || ($count == 0)) { + return Functions::NAN(); + } + sort($mArgs); + + return $mArgs[$entry]; + } + + return Functions::VALUE(); + } + + /** + * STANDARDIZE. + * + * Returns a normalized value from a distribution characterized by mean and standard_dev. + * + * @param float $value Value to normalize + * @param float $mean Mean Value + * @param float $stdDev Standard Deviation + * + * @return float|string Standardized value, or a string containing an error + */ + public static function STANDARDIZE($value, $mean, $stdDev) + { + $value = Functions::flattenSingleValue($value); + $mean = Functions::flattenSingleValue($mean); + $stdDev = Functions::flattenSingleValue($stdDev); + + if ((is_numeric($value)) && (is_numeric($mean)) && (is_numeric($stdDev))) { + if ($stdDev <= 0) { + return Functions::NAN(); + } + + return ($value - $mean) / $stdDev; + } + + return Functions::VALUE(); + } + + /** + * STDEV. + * + * Estimates standard deviation based on a sample. The standard deviation is a measure of how + * widely values are dispersed from the average value (the mean). + * + * Excel Function: + * STDEV(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string The result, or a string containing an error + */ + public static function STDEV(...$args) + { + $aArgs = Functions::flattenArrayIndexed($args); + + // Return value + $returnValue = null; + + $aMean = self::AVERAGE($aArgs); + if ($aMean !== null) { + $aCount = -1; + foreach ($aArgs as $k => $arg) { + if ( + (is_bool($arg)) && + ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE)) + ) { + $arg = (int) $arg; + } + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + if ($returnValue === null) { + $returnValue = ($arg - $aMean) ** 2; + } else { + $returnValue += ($arg - $aMean) ** 2; + } + ++$aCount; + } + } + + // Return + if (($aCount > 0) && ($returnValue >= 0)) { + return sqrt($returnValue / $aCount); + } + } + + return Functions::DIV0(); + } + + /** + * STDEVA. + * + * Estimates standard deviation based on a sample, including numbers, text, and logical values + * + * Excel Function: + * STDEVA(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function STDEVA(...$args) + { + $aArgs = Functions::flattenArrayIndexed($args); + + $returnValue = null; + + $aMean = self::AVERAGEA($aArgs); + if ($aMean !== null) { + $aCount = -1; + foreach ($aArgs as $k => $arg) { + if ( + (is_bool($arg)) && + (!Functions::isMatrixValue($k)) + ) { + } else { + // Is it a numeric value? + if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { + if (is_bool($arg)) { + $arg = (int) $arg; + } elseif (is_string($arg)) { + $arg = 0; + } + if ($returnValue === null) { + $returnValue = ($arg - $aMean) ** 2; + } else { + $returnValue += ($arg - $aMean) ** 2; + } + ++$aCount; + } + } + } + + if (($aCount > 0) && ($returnValue >= 0)) { + return sqrt($returnValue / $aCount); + } + } + + return Functions::DIV0(); + } + + /** + * STDEVP. + * + * Calculates standard deviation based on the entire population + * + * Excel Function: + * STDEVP(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function STDEVP(...$args) + { + $aArgs = Functions::flattenArrayIndexed($args); + + $returnValue = null; + + $aMean = self::AVERAGE($aArgs); + if ($aMean !== null) { + $aCount = 0; + foreach ($aArgs as $k => $arg) { + if ( + (is_bool($arg)) && + ((!Functions::isCellValue($k)) || (Functions::getCompatibilityMode() == Functions::COMPATIBILITY_OPENOFFICE)) + ) { + $arg = (int) $arg; + } + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + if ($returnValue === null) { + $returnValue = ($arg - $aMean) ** 2; + } else { + $returnValue += ($arg - $aMean) ** 2; + } + ++$aCount; + } + } + + if (($aCount > 0) && ($returnValue >= 0)) { + return sqrt($returnValue / $aCount); + } + } + + return Functions::DIV0(); + } + + /** + * STDEVPA. + * + * Calculates standard deviation based on the entire population, including numbers, text, and logical values + * + * Excel Function: + * STDEVPA(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string + */ + public static function STDEVPA(...$args) + { + $aArgs = Functions::flattenArrayIndexed($args); + + $returnValue = null; + + $aMean = self::AVERAGEA($aArgs); + if ($aMean !== null) { + $aCount = 0; + foreach ($aArgs as $k => $arg) { + if ( + (is_bool($arg)) && + (!Functions::isMatrixValue($k)) + ) { + } else { + // Is it a numeric value? + if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { + if (is_bool($arg)) { + $arg = (int) $arg; + } elseif (is_string($arg)) { + $arg = 0; + } + if ($returnValue === null) { + $returnValue = ($arg - $aMean) ** 2; + } else { + $returnValue += ($arg - $aMean) ** 2; + } + ++$aCount; + } + } + } + + if (($aCount > 0) && ($returnValue >= 0)) { + return sqrt($returnValue / $aCount); + } + } + + return Functions::DIV0(); + } + + /** + * STEYX. + * + * Returns the standard error of the predicted y-value for each x in the regression. + * + * @param mixed[] $yValues Data Series Y + * @param mixed[] $xValues Data Series X + * + * @return float|string + */ + public static function STEYX($yValues, $xValues) + { + if (!self::checkTrendArrays($yValues, $xValues)) { + return Functions::VALUE(); + } + $yValueCount = count($yValues); + $xValueCount = count($xValues); + + if (($yValueCount == 0) || ($yValueCount != $xValueCount)) { + return Functions::NA(); + } elseif ($yValueCount == 1) { + return Functions::DIV0(); + } + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues); + + return $bestFitLinear->getStdevOfResiduals(); + } + + /** + * TDIST. + * + * Returns the probability of Student's T distribution. + * + * @param float $value Value for the function + * @param float $degrees degrees of freedom + * @param float $tails number of tails (1 or 2) + * + * @return float|string The result, or a string containing an error + */ + public static function TDIST($value, $degrees, $tails) + { + $value = Functions::flattenSingleValue($value); + $degrees = floor(Functions::flattenSingleValue($degrees)); + $tails = floor(Functions::flattenSingleValue($tails)); + + if ((is_numeric($value)) && (is_numeric($degrees)) && (is_numeric($tails))) { + if (($value < 0) || ($degrees < 1) || ($tails < 1) || ($tails > 2)) { + return Functions::NAN(); + } + // tdist, which finds the probability that corresponds to a given value + // of t with k degrees of freedom. This algorithm is translated from a + // pascal function on p81 of "Statistical Computing in Pascal" by D + // Cooke, A H Craven & G M Clark (1985: Edward Arnold (Pubs.) Ltd: + // London). The above Pascal algorithm is itself a translation of the + // fortran algoritm "AS 3" by B E Cooper of the Atlas Computer + // Laboratory as reported in (among other places) "Applied Statistics + // Algorithms", editied by P Griffiths and I D Hill (1985; Ellis + // Horwood Ltd.; W. Sussex, England). + $tterm = $degrees; + $ttheta = atan2($value, sqrt($tterm)); + $tc = cos($ttheta); + $ts = sin($ttheta); + + if (($degrees % 2) == 1) { + $ti = 3; + $tterm = $tc; + } else { + $ti = 2; + $tterm = 1; + } + + $tsum = $tterm; + while ($ti < $degrees) { + $tterm *= $tc * $tc * ($ti - 1) / $ti; + $tsum += $tterm; + $ti += 2; + } + $tsum *= $ts; + if (($degrees % 2) == 1) { + $tsum = Functions::M_2DIVPI * ($tsum + $ttheta); + } + $tValue = 0.5 * (1 + $tsum); + if ($tails == 1) { + return 1 - abs($tValue); + } + + return 1 - abs((1 - $tValue) - $tValue); + } + + return Functions::VALUE(); + } + + /** + * TINV. + * + * Returns the one-tailed probability of the chi-squared distribution. + * + * @param float $probability Probability for the function + * @param float $degrees degrees of freedom + * + * @return float|string The result, or a string containing an error + */ + public static function TINV($probability, $degrees) + { + $probability = Functions::flattenSingleValue($probability); + $degrees = floor(Functions::flattenSingleValue($degrees)); + + if ((is_numeric($probability)) && (is_numeric($degrees))) { + $xLo = 100; + $xHi = 0; + + $x = $xNew = 1; + $dx = 1; + $i = 0; + + while ((abs($dx) > Functions::PRECISION) && ($i++ < self::MAX_ITERATIONS)) { + // Apply Newton-Raphson step + $result = self::TDIST($x, $degrees, 2); + $error = $result - $probability; + if ($error == 0.0) { + $dx = 0; + } elseif ($error < 0.0) { + $xLo = $x; + } else { + $xHi = $x; + } + // Avoid division by zero + if ($result != 0.0) { + $dx = $error / $result; + $xNew = $x - $dx; + } + // If the NR fails to converge (which for example may be the + // case if the initial guess is too rough) we apply a bisection + // step to determine a more narrow interval around the root. + if (($xNew < $xLo) || ($xNew > $xHi) || ($result == 0.0)) { + $xNew = ($xLo + $xHi) / 2; + $dx = $xNew - $x; + } + $x = $xNew; + } + if ($i == self::MAX_ITERATIONS) { + return Functions::NA(); + } + + return round($x, 12); + } + + return Functions::VALUE(); + } + + /** + * TREND. + * + * Returns values along a linear Trend + * + * @param mixed[] $yValues Data Series Y + * @param mixed[] $xValues Data Series X + * @param mixed[] $newValues Values of X for which we want to find Y + * @param bool $const a logical value specifying whether to force the intersect to equal 0 + * + * @return array of float + */ + public static function TREND($yValues, $xValues = [], $newValues = [], $const = true) + { + $yValues = Functions::flattenArray($yValues); + $xValues = Functions::flattenArray($xValues); + $newValues = Functions::flattenArray($newValues); + $const = ($const === null) ? true : (bool) Functions::flattenSingleValue($const); + + $bestFitLinear = Trend::calculate(Trend::TREND_LINEAR, $yValues, $xValues, $const); + if (empty($newValues)) { + $newValues = $bestFitLinear->getXValues(); + } + + $returnArray = []; + foreach ($newValues as $xValue) { + $returnArray[0][] = $bestFitLinear->getValueOfYForX($xValue); + } + + return $returnArray; + } + + /** + * TRIMMEAN. + * + * Returns the mean of the interior of a data set. TRIMMEAN calculates the mean + * taken by excluding a percentage of data points from the top and bottom tails + * of a data set. + * + * Excel Function: + * TRIMEAN(value1[,value2[, ...]], $discard) + * + * @param mixed $args Data values + * + * @return float|string + */ + public static function TRIMMEAN(...$args) + { + $aArgs = Functions::flattenArray($args); + + // Calculate + $percent = array_pop($aArgs); + + if ((is_numeric($percent)) && (!is_string($percent))) { + if (($percent < 0) || ($percent > 1)) { + return Functions::NAN(); + } + $mArgs = []; + foreach ($aArgs as $arg) { + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $mArgs[] = $arg; + } + } + $discard = floor(self::COUNT($mArgs) * $percent / 2); + sort($mArgs); + for ($i = 0; $i < $discard; ++$i) { + array_pop($mArgs); + array_shift($mArgs); + } + + return self::AVERAGE($mArgs); + } + + return Functions::VALUE(); + } + + /** + * VARFunc. + * + * Estimates variance based on a sample. + * + * Excel Function: + * VAR(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string (string if result is an error) + */ + public static function VARFunc(...$args) + { + $returnValue = Functions::DIV0(); + + $summerA = $summerB = 0; + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + $aCount = 0; + foreach ($aArgs as $arg) { + if (is_bool($arg)) { + $arg = (int) $arg; + } + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $summerA += ($arg * $arg); + $summerB += $arg; + ++$aCount; + } + } + + if ($aCount > 1) { + $summerA *= $aCount; + $summerB *= $summerB; + $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); + } + + return $returnValue; + } + + /** + * VARA. + * + * Estimates variance based on a sample, including numbers, text, and logical values + * + * Excel Function: + * VARA(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string (string if result is an error) + */ + public static function VARA(...$args) + { + $returnValue = Functions::DIV0(); + + $summerA = $summerB = 0; + + // Loop through arguments + $aArgs = Functions::flattenArrayIndexed($args); + $aCount = 0; + foreach ($aArgs as $k => $arg) { + if ( + (is_string($arg)) && + (Functions::isValue($k)) + ) { + return Functions::VALUE(); + } elseif ( + (is_string($arg)) && + (!Functions::isMatrixValue($k)) + ) { + } else { + // Is it a numeric value? + if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { + if (is_bool($arg)) { + $arg = (int) $arg; + } elseif (is_string($arg)) { + $arg = 0; + } + $summerA += ($arg * $arg); + $summerB += $arg; + ++$aCount; + } + } + } + + if ($aCount > 1) { + $summerA *= $aCount; + $summerB *= $summerB; + $returnValue = ($summerA - $summerB) / ($aCount * ($aCount - 1)); + } + + return $returnValue; + } + + /** + * VARP. + * + * Calculates variance based on the entire population + * + * Excel Function: + * VARP(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string (string if result is an error) + */ + public static function VARP(...$args) + { + // Return value + $returnValue = Functions::DIV0(); + + $summerA = $summerB = 0; + + // Loop through arguments + $aArgs = Functions::flattenArray($args); + $aCount = 0; + foreach ($aArgs as $arg) { + if (is_bool($arg)) { + $arg = (int) $arg; + } + // Is it a numeric value? + if ((is_numeric($arg)) && (!is_string($arg))) { + $summerA += ($arg * $arg); + $summerB += $arg; + ++$aCount; + } + } + + if ($aCount > 0) { + $summerA *= $aCount; + $summerB *= $summerB; + $returnValue = ($summerA - $summerB) / ($aCount * $aCount); + } + + return $returnValue; + } + + /** + * VARPA. + * + * Calculates variance based on the entire population, including numbers, text, and logical values + * + * Excel Function: + * VARPA(value1[,value2[, ...]]) + * + * @param mixed ...$args Data values + * + * @return float|string (string if result is an error) + */ + public static function VARPA(...$args) + { + $returnValue = Functions::DIV0(); + + $summerA = $summerB = 0; + + // Loop through arguments + $aArgs = Functions::flattenArrayIndexed($args); + $aCount = 0; + foreach ($aArgs as $k => $arg) { + if ( + (is_string($arg)) && + (Functions::isValue($k)) + ) { + return Functions::VALUE(); + } elseif ( + (is_string($arg)) && + (!Functions::isMatrixValue($k)) + ) { + } else { + // Is it a numeric value? + if ((is_numeric($arg)) || (is_bool($arg)) || ((is_string($arg) & ($arg != '')))) { + if (is_bool($arg)) { + $arg = (int) $arg; + } elseif (is_string($arg)) { + $arg = 0; + } + $summerA += ($arg * $arg); + $summerB += $arg; + ++$aCount; + } + } + } + + if ($aCount > 0) { + $summerA *= $aCount; + $summerB *= $summerB; + $returnValue = ($summerA - $summerB) / ($aCount * $aCount); + } + + return $returnValue; + } + + /** + * WEIBULL. + * + * Returns the Weibull distribution. Use this distribution in reliability + * analysis, such as calculating a device's mean time to failure. + * + * @param float $value + * @param float $alpha Alpha Parameter + * @param float $beta Beta Parameter + * @param bool $cumulative + * + * @return float|string (string if result is an error) + */ + public static function WEIBULL($value, $alpha, $beta, $cumulative) + { + $value = Functions::flattenSingleValue($value); + $alpha = Functions::flattenSingleValue($alpha); + $beta = Functions::flattenSingleValue($beta); + + if ((is_numeric($value)) && (is_numeric($alpha)) && (is_numeric($beta))) { + if (($value < 0) || ($alpha <= 0) || ($beta <= 0)) { + return Functions::NAN(); + } + if ((is_numeric($cumulative)) || (is_bool($cumulative))) { + if ($cumulative) { + return 1 - exp(0 - ($value / $beta) ** $alpha); + } + + return ($alpha / $beta ** $alpha) * $value ** ($alpha - 1) * exp(0 - ($value / $beta) ** $alpha); + } + } + + return Functions::VALUE(); + } + + /** + * ZTEST. + * + * Returns the Weibull distribution. Use this distribution in reliability + * analysis, such as calculating a device's mean time to failure. + * + * @param float $dataSet + * @param float $m0 Alpha Parameter + * @param float $sigma Beta Parameter + * + * @return float|string (string if result is an error) + */ + public static function ZTEST($dataSet, $m0, $sigma = null) + { + $dataSet = Functions::flattenArrayIndexed($dataSet); + $m0 = Functions::flattenSingleValue($m0); + $sigma = Functions::flattenSingleValue($sigma); + + if ($sigma === null) { + $sigma = self::STDEV($dataSet); + } + $n = count($dataSet); + + return 1 - self::NORMSDIST((self::AVERAGE($dataSet) - $m0) / ($sigma / sqrt($n))); + } +} -- cgit v1.2.3