1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#pragma once
// Some settings
#define NOISE_USE_INLINE 1
#define NOISE_USE_SSE 0
#define NOISE_DATATYPE double
// Do not touch
#if NOISE_USE_INLINE
#ifdef _MSC_VER
#define __NOISE_INLINE__ __forceinline
#else
#define __NOISE_INLINE__ inline
#endif // _MSC_VER
#else
#define __NOISE_INLINE__
#endif
#if NOISE_USE_SSE
#include <emmintrin.h>
#endif
class cNoise
{
public:
cNoise( unsigned int a_Seed );
#if NOISE_USE_SSE
__m128 SSE_IntNoise2D( int a_X1, int a_Y1, int a_X2, int a_Y2, int a_X3, int a_Y3, int a_X4, int a_Y4 ) const;
#endif
__NOISE_INLINE__ float IntNoise( int a_X ) const;
__NOISE_INLINE__ float IntNoise2D( int a_X, int a_Y ) const;
__NOISE_INLINE__ float IntNoise3D( int a_X, int a_Y, int a_Z ) const;
// Note: These functions have a mod8-irregular chance - each of the mod8 remainders has different chance of occurrence. Divide by 8 to rectify.
__NOISE_INLINE__ int IntNoise1DInt( int a_X ) const;
__NOISE_INLINE__ int IntNoise2DInt( int a_X, int a_Y ) const;
__NOISE_INLINE__ int IntNoise3DInt( int a_X, int a_Y, int a_Z ) const;
float LinearNoise1D( float a_X ) const;
float CosineNoise1D( float a_X ) const;
float CubicNoise1D( float a_X ) const;
float SmoothNoise1D( int a_X ) const;
float LinearNoise2D( float a_X, float a_Y ) const;
float CosineNoise2D( float a_X, float a_Y ) const;
float CubicNoise2D( float a_X, float a_Y ) const;
float SSE_CubicNoise2D( float a_X, float a_Y ) const;
float CosineNoise3D( float a_X, float a_Y, float a_Z ) const;
float CubicNoise3D( float a_X, float a_Y, float a_Z ) const;
void SetSeed( unsigned int a_Seed ) { m_Seed = a_Seed; }
__NOISE_INLINE__ static float CubicInterpolate (float a_A, float a_B, float a_C, float a_D, float a_Pct);
__NOISE_INLINE__ static float CosineInterpolate(float a_A, float a_B, float a_Pct);
__NOISE_INLINE__ static float LinearInterpolate(float a_A, float a_B, float a_Pct);
private:
#if NOISE_USE_SSE
__m128 CubicInterpolate4( const __m128 & a_A, const __m128 & a_B, const __m128 & a_C, const __m128 & a_D, float a_Pct ) const;
#endif
unsigned int m_Seed;
};
/// Linearly interpolates values in the array between the anchor points
extern void IntArrayLinearInterpolate2D(
int * a_Array,
int a_SizeX, int a_SizeY, // Dimensions of the array
int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction
);
/// Linearly interpolates values in the array between the anchor points; universal data type
template<typename TYPE> void ArrayLinearInterpolate2D(
TYPE * a_Array,
int a_SizeX, int a_SizeY, // Dimensions of the array
int a_AnchorStepX, int a_AnchorStepY // Distances between the anchor points in each direction
)
{
// First interpolate columns where the anchor points are:
int LastYCell = a_SizeY - a_AnchorStepY;
for (int y = 0; y < LastYCell; y += a_AnchorStepY)
{
int Idx = a_SizeX * y;
for (int x = 0; x < a_SizeX; x += a_AnchorStepX)
{
TYPE StartValue = a_Array[Idx];
TYPE EndValue = a_Array[Idx + a_SizeX * a_AnchorStepY];
TYPE Diff = EndValue - StartValue;
for (int CellY = 1; CellY < a_AnchorStepY; CellY++)
{
a_Array[Idx + a_SizeX * CellY] = StartValue + Diff * CellY / a_AnchorStepY;
} // for CellY
Idx += a_AnchorStepX;
} // for x
} // for y
// Now interpolate in rows, each row has values in the anchor columns
int LastXCell = a_SizeX - a_AnchorStepX;
for (int y = 0; y < a_SizeY; y++)
{
int Idx = a_SizeX * y;
for (int x = 0; x < LastXCell; x += a_AnchorStepX)
{
TYPE StartValue = a_Array[Idx];
TYPE EndValue = a_Array[Idx + a_AnchorStepX];
TYPE Diff = EndValue - StartValue;
for (int CellX = 1; CellX < a_AnchorStepX; CellX++)
{
a_Array[Idx + CellX] = StartValue + CellX * Diff / a_AnchorStepX;
} // for CellY
Idx += a_AnchorStepX;
}
}
}
#if NOISE_USE_INLINE
#include "Noise.inc"
#endif
class cCubicNoise
{
public:
static const int MAX_SIZE = 512; ///< Maximum size of each dimension of the query arrays.
cCubicNoise(int a_Seed);
void Generate1D(
NOISE_DATATYPE * a_Array, ///< Array to generate into
int a_SizeX, ///< Count of the array
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array
NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash
);
void Generate2D(
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, ///< Count of the array, in each direction
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction
NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash
);
void Generate3D(
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z]
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction
NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ, ///< Noise-space coords of the array in the Z direction
NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash
);
protected:
typedef NOISE_DATATYPE Workspace1D[4];
typedef NOISE_DATATYPE Workspace2D[4][4];
cNoise m_Noise; // Used for integral rnd values
/// Calculates the integral and fractional parts along one axis.
void CalcFloorFrac(
int a_Size,
NOISE_DATATYPE a_Start, NOISE_DATATYPE a_End,
int * a_Floor, NOISE_DATATYPE * a_Frac,
int * a_Same, int & a_NumSame
);
void UpdateWorkRnds2DX(
Workspace2D & a_WorkRnds,
Workspace1D & a_Interps,
int a_LastFloorX, int a_NewFloorX,
int a_FloorY,
NOISE_DATATYPE a_FractionY
);
} ;
class cPerlinNoise
{
public:
void Generate1D(
NOISE_DATATYPE * a_Array, ///< Array to generate into
int a_SizeX, ///< Count of the array
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array
NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash
);
void Generate2D(
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y]
int a_SizeX, int a_SizeY, ///< Count of the array, in each direction
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction
NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash
);
void Generate3D(
NOISE_DATATYPE * a_Array, ///< Array to generate into [x + a_SizeX * y + a_SizeX * a_SizeY * z]
int a_SizeX, int a_SizeY, int a_SizeZ, ///< Count of the array, in each direction
NOISE_DATATYPE a_StartX, NOISE_DATATYPE a_EndX, ///< Noise-space coords of the array in the X direction
NOISE_DATATYPE a_StartY, NOISE_DATATYPE a_EndY, ///< Noise-space coords of the array in the Y direction
NOISE_DATATYPE a_StartZ, NOISE_DATATYPE a_EndZ, ///< Noise-space coords of the array in the Z direction
NOISE_DATATYPE * a_Workspace = NULL ///< Workspace that this function can use and trash
);
} ;
|