#include "Globals.h"
#include "ChunkData.h"
cChunkData::cChunkData()
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
: m_IsOwner(true)
#endif
{
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
m_Sections[i] = NULL;
}
}
cChunkData::~cChunkData()
{
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
if (!m_IsOwner)
{
return;
}
#endif
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
Free(m_Sections[i]);
}
}
#if __cplusplus < 201103L
// auto_ptr style interface for memory management
cChunkData::cChunkData(const cChunkData & a_Other) :
m_IsOwner(true)
{
// Move contents and ownership from a_Other to this, pointer-wise:
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
m_Sections[i] = a_Other.m_Sections[i];
}
a_Other.m_IsOwner = false;
}
cChunkData & cChunkData::operator =(const cChunkData & a_Other)
{
// If assigning to self, no-op
if (&a_Other == this)
{
return *this;
}
// Free any currently held contents:
if (m_IsOwner)
{
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
Free(m_Sections[i]);
}
}
// Move contents and ownership from a_Other to this, pointer-wise:
m_IsOwner = true;
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
m_Sections[i] = a_Other.m_Sections[i];
}
a_Other.m_IsOwner = false;
return *this;
}
#else
// unique_ptr style interface for memory management
cChunkData::cChunkData(cChunkData && other)
{
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
m_Sections[i] = other.m_Sections[i];
other.m_Sections[i] = NULL;
}
}
cChunkData & cChunkData::operator =(cChunkData && other)
{
if (&other != this)
{
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
Free(m_Sections[i]);
m_Sections[i] = other.m_Sections[i];
other.m_Sections[i] = NULL;
}
}
return *this;
}
#endif
BLOCKTYPE cChunkData::GetBlock(int a_X, int a_Y, int a_Z) const
{
ASSERT((a_X >= 0) && (a_X < cChunkDef::Width));
ASSERT((a_Y >= 0) && (a_Y < cChunkDef::Height));
ASSERT((a_Z >= 0) && (a_Z < cChunkDef::Width));
int Section = a_Y / CHUNK_SECTION_HEIGHT;
if (m_Sections[Section] != NULL)
{
int Index = cChunkDef::MakeIndexNoCheck(a_X, a_Y - (Section * CHUNK_SECTION_HEIGHT), a_Z);
return m_Sections[Section]->m_BlockTypes[Index];
}
else
{
return 0;
}
}
void cChunkData::SetBlock(int a_RelX, int a_RelY, int a_RelZ, BLOCKTYPE a_Block)
{
if (
(a_RelX >= cChunkDef::Width) || (a_RelX < 0) ||
(a_RelY >= cChunkDef::Height) || (a_RelY < 0) ||
(a_RelZ >= cChunkDef::Width) || (a_RelZ < 0)
)
{
ASSERT(!"cChunkData::SetMeta(): index out of range!");
return;
}
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if (m_Sections[Section] == NULL)
{
if (a_Block == 0x00)
{
return;
}
m_Sections[Section] = Allocate();
if (m_Sections[Section] == NULL)
{
ASSERT(!"Failed to allocate a new section in Chunkbuffer");
return;
}
ZeroSection(m_Sections[Section]);
}
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
m_Sections[Section]->m_BlockTypes[Index] = a_Block;
}
NIBBLETYPE cChunkData::GetMeta(int a_RelX, int a_RelY, int a_RelZ) const
{
if (
(a_RelX < cChunkDef::Width) && (a_RelX > -1) &&
(a_RelY < cChunkDef::Height) && (a_RelY > -1) &&
(a_RelZ < cChunkDef::Width) && (a_RelZ > -1))
{
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if (m_Sections[Section] != NULL)
{
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
return (m_Sections[Section]->m_BlockMeta[Index / 2] >> ((Index & 1) * 4)) & 0x0f;
}
else
{
return 0;
}
}
ASSERT(!"cChunkData::GetMeta(): coords out of chunk range!");
return 0;
}
bool cChunkData::SetMeta(int a_RelX, int a_RelY, int a_RelZ, NIBBLETYPE a_Nibble)
{
if (
(a_RelX >= cChunkDef::Width) || (a_RelX < 0) ||
(a_RelY >= cChunkDef::Height) || (a_RelY < 0) ||
(a_RelZ >= cChunkDef::Width) || (a_RelZ < 0)
)
{
ASSERT(!"cChunkData::SetMeta(): index out of range!");
return false;
}
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if (m_Sections[Section] == NULL)
{
if ((a_Nibble & 0xf) == 0x00)
{
return false;
}
m_Sections[Section] = Allocate();
if (m_Sections[Section] == NULL)
{
ASSERT(!"Failed to allocate a new section in Chunkbuffer");
return false;
}
ZeroSection(m_Sections[Section]);
}
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
NIBBLETYPE oldval = m_Sections[Section]->m_BlockMeta[Index / 2] >> ((Index & 1) * 4) & 0xf;
m_Sections[Section]->m_BlockMeta[Index / 2] = static_cast<NIBBLETYPE>(
(m_Sections[Section]->m_BlockMeta[Index / 2] & (0xf0 >> ((Index & 1) * 4))) | // The untouched nibble
((a_Nibble & 0x0f) << ((Index & 1) * 4)) // The nibble being set
);
return oldval == a_Nibble;
}
NIBBLETYPE cChunkData::GetBlockLight(int a_RelX, int a_RelY, int a_RelZ) const
{
if (
(a_RelX < cChunkDef::Width) && (a_RelX > -1) &&
(a_RelY < cChunkDef::Height) && (a_RelY > -1) &&
(a_RelZ < cChunkDef::Width) && (a_RelZ > -1)
)
{
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if (m_Sections[Section] != NULL)
{
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
return (m_Sections[Section]->m_BlockLight[Index / 2] >> ((Index & 1) * 4)) & 0x0f;
}
else
{
return 0;
}
}
ASSERT(!"cChunkData::GetMeta(): coords out of chunk range!");
return 0;
}
NIBBLETYPE cChunkData::GetSkyLight(int a_RelX, int a_RelY, int a_RelZ) const
{
if ((a_RelX < cChunkDef::Width) && (a_RelX > -1) && (a_RelY < cChunkDef::Height) && (a_RelY > -1) && (a_RelZ < cChunkDef::Width) && (a_RelZ > -1))
{
int Section = a_RelY / CHUNK_SECTION_HEIGHT;
if (m_Sections[Section] != NULL)
{
int Index = cChunkDef::MakeIndexNoCheck(a_RelX, a_RelY - (Section * CHUNK_SECTION_HEIGHT), a_RelZ);
return (m_Sections[Section]->m_BlockLight[Index / 2] >> ((Index & 1) * 4)) & 0x0f;
}
else
{
return 0xF;
}
}
ASSERT(!"cChunkData::GetMeta(): coords out of chunk range!");
return 0;
}
cChunkData cChunkData::Copy(void) const
{
cChunkData copy;
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
if (m_Sections[i] != NULL)
{
copy.m_Sections[i] = Allocate();
*copy.m_Sections[i] = *m_Sections[i];
}
}
return copy;
}
void cChunkData::CopyBlocks(BLOCKTYPE * a_Dest, size_t a_Idx, size_t a_Length) const
{
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
const size_t SegmentLength = CHUNK_SECTION_HEIGHT * 16 * 16;
if (a_Idx > 0)
{
a_Idx = std::max(a_Idx - a_Length, (size_t) 0);
}
if (a_Idx == 0)
{
size_t ToCopy = std::min(SegmentLength, a_Length);
a_Length -= ToCopy;
if (m_Sections[i] != NULL)
{
memcpy(
&a_Dest[i * SegmentLength],
&m_Sections[i]->m_BlockTypes,
sizeof(BLOCKTYPE) * ToCopy
);
}
else
{
memset(
&a_Dest[i * SegmentLength],
0,
sizeof(BLOCKTYPE) * ToCopy
);
}
}
}
}
void cChunkData::CopyMeta(NIBBLETYPE * a_Dest) const
{
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
const size_t SegmentLength = CHUNK_SECTION_HEIGHT * 16 * 16 / 2;
if (m_Sections[i] != NULL)
{
memcpy(
&a_Dest[i * SegmentLength],
&m_Sections[i]->m_BlockMeta,
sizeof(NIBBLETYPE) * SegmentLength
);
}
else
{
memset(
&a_Dest[i * SegmentLength],
0,
sizeof(BLOCKTYPE) * SegmentLength
);
}
}
}
void cChunkData::CopyBlockLight(NIBBLETYPE * a_Dest) const
{
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
const size_t SegmentLength = CHUNK_SECTION_HEIGHT * 16 * 16 / 2;
if (m_Sections[i] != NULL)
{
memcpy(
&a_Dest[i * SegmentLength],
&m_Sections[i]->m_BlockLight,
sizeof(NIBBLETYPE) * SegmentLength
);
}
else
{
memset(
&a_Dest[i * SegmentLength],
0,
sizeof(BLOCKTYPE) * SegmentLength
);
}
}
}
void cChunkData::CopySkyLight(NIBBLETYPE * a_Dest) const
{
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
const size_t SegmentLength = CHUNK_SECTION_HEIGHT * 16 * 16 / 2;
if (m_Sections[i] != NULL)
{
memcpy(
&a_Dest[i * SegmentLength],
&m_Sections[i]->m_BlockSkyLight,
sizeof(NIBBLETYPE) * SegmentLength
);
}
else
{
memset(
&a_Dest[i * SegmentLength],
0xFF,
sizeof(BLOCKTYPE) * SegmentLength
);
}
}
}
void cChunkData::SetBlocks(const BLOCKTYPE * a_Src)
{
ASSERT(a_Src != NULL);
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
const size_t SegmentLength = CHUNK_SECTION_HEIGHT * 16 * 16;
if (m_Sections[i] != NULL)
{
memcpy(
&m_Sections[i]->m_BlockTypes,
&a_Src[i * SegmentLength],
sizeof(BLOCKTYPE) * SegmentLength
);
}
else
{
// j counts how many of leading zeros the buffer has
// if j == SegmentLength then the buffer is all zeros so there is no point
// creating the buffer.
size_t j = 0;
// do nothing whilst 0
for (; (j < SegmentLength) && (a_Src[i * SegmentLength + j] == 0); j++);
if (j != SegmentLength)
{
m_Sections[i] = Allocate();
memcpy(
&m_Sections[i]->m_BlockTypes,
&a_Src[i * SegmentLength],
sizeof(BLOCKTYPE) * SegmentLength
);
memset(
m_Sections[i]->m_BlockMeta,
0x00,
sizeof(m_Sections[i]->m_BlockMeta)
);
memset(
m_Sections[i]->m_BlockLight,
0x00,
sizeof(m_Sections[i]->m_BlockLight)
);
memset(
m_Sections[i]->m_BlockSkyLight,
0xFF,
sizeof(m_Sections[i]->m_BlockSkyLight)
);
}
}
}
}
void cChunkData::SetMeta(const NIBBLETYPE * a_Src)
{
ASSERT(a_Src != NULL);
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
const size_t SegmentLength = CHUNK_SECTION_HEIGHT * 16 * 16 / 2;
if (m_Sections[i] != NULL)
{
memcpy(
&m_Sections[i]->m_BlockMeta,
&a_Src[i * SegmentLength],
sizeof(NIBBLETYPE) * SegmentLength
);
}
else
{
// j counts how many of leading zeros the buffer has
// if j == SegmentLength then the buffer is all zeros so there is no point
// creating the buffer.
size_t j = 0;
// do nothing whilst 0
for (; (j < SegmentLength) && (a_Src[i * SegmentLength + j] == 0); j++);
if (j != SegmentLength)
{
m_Sections[i] = Allocate();
memcpy(
&m_Sections[i]->m_BlockMeta,
&a_Src[i * SegmentLength],
sizeof(BLOCKTYPE) * SegmentLength
);
memset(
m_Sections[i]->m_BlockTypes,
0x00,
sizeof(m_Sections[i]->m_BlockTypes)
);
memset(
m_Sections[i]->m_BlockLight,
0x00,
sizeof(m_Sections[i]->m_BlockLight)
);
memset(
m_Sections[i]->m_BlockSkyLight,
0xFF,
sizeof(m_Sections[i]->m_BlockSkyLight)
);
}
}
}
}
void cChunkData::SetBlockLight(const NIBBLETYPE * a_Src)
{
if (a_Src == NULL)
{
return;
}
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
const size_t SegmentLength = CHUNK_SECTION_HEIGHT * 16 * 16 / 2;
if (m_Sections[i] != NULL)
{
memcpy(
&m_Sections[i]->m_BlockLight,
&a_Src[i * SegmentLength],
sizeof(NIBBLETYPE) * SegmentLength
);
}
else
{
// j counts how many of leading zeros the buffer has
// if j == SegmentLength then the buffer is all zeros so there is no point
// creating the buffer.
size_t j = 0;
// do nothing whilst 0
for (; (j < SegmentLength) && (a_Src[i * SegmentLength + j] == 0); j++);
if (j != SegmentLength)
{
m_Sections[i] = Allocate();
memcpy(
&m_Sections[i]->m_BlockLight,
&a_Src[i * SegmentLength],
sizeof(BLOCKTYPE) * SegmentLength
);
memset(
m_Sections[i]->m_BlockTypes,
0x00,
sizeof(m_Sections[i]->m_BlockTypes)
);
memset(
m_Sections[i]->m_BlockMeta,
0x00,
sizeof(m_Sections[i]->m_BlockMeta)
);
memset(
m_Sections[i]->m_BlockSkyLight,
0xFF,
sizeof(m_Sections[i]->m_BlockSkyLight)
);
}
}
}
}
void cChunkData::SetSkyLight(const NIBBLETYPE * a_Src)
{
if (a_Src == NULL)
{
return;
}
for (size_t i = 0; i < CHUNK_SECTION_COUNT; i++)
{
const size_t SegmentLength = CHUNK_SECTION_HEIGHT * 16 * 16 / 2;
if (m_Sections[i] != NULL)
{
memcpy(
&m_Sections[i]->m_BlockSkyLight,
&a_Src[i * SegmentLength],
sizeof(NIBBLETYPE) * SegmentLength
);
}
else
{
// j counts how many of leading zeros the buffer has
// if j == SegmentLength then the buffer is all zeros so there is no point
// creating the buffer.
size_t j = 0;
// do nothing whilst 0
for (; (j < SegmentLength) && (a_Src[i * SegmentLength + j]) == 0xFF; j++);
if (j != SegmentLength)
{
m_Sections[i] = Allocate();
memcpy(
&m_Sections[i]->m_BlockSkyLight,
&a_Src[i * SegmentLength],
sizeof(BLOCKTYPE) * SegmentLength
);
memset(
m_Sections[i]->m_BlockTypes,
0x00,
sizeof(m_Sections[i]->m_BlockTypes)
);
memset(
m_Sections[i]->m_BlockMeta,
0x00,
sizeof(m_Sections[i]->m_BlockMeta)
);
memset(
m_Sections[i]->m_BlockLight,
0x00,
sizeof(m_Sections[i]->m_BlockLight)
);
}
}
}
}
cChunkData::sChunkSection * cChunkData::Allocate(void)
{
// TODO: Use an allocation pool
return new cChunkData::sChunkSection;
}
void cChunkData::Free(cChunkData::sChunkSection * a_Section)
{
// TODO: Use an allocation pool
delete a_Section;
}
void cChunkData::ZeroSection(cChunkData::sChunkSection * a_Section) const
{
memset(
a_Section->m_BlockTypes,
0x00,
sizeof(a_Section->m_BlockTypes)
);
memset(
a_Section->m_BlockMeta,
0x00,
sizeof(a_Section->m_BlockMeta)
);
memset(
a_Section->m_BlockLight,
0x00,
sizeof(a_Section->m_BlockLight)
);
memset(
a_Section->m_BlockSkyLight,
0xFF,
sizeof(a_Section->m_BlockSkyLight)
);
}