// ec2n.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_IMPORTS
#include "ec2n.h"
#include "asn.h"
#include "algebra.cpp"
#include "eprecomp.cpp"
NAMESPACE_BEGIN(CryptoPP)
EC2N::EC2N(BufferedTransformation &bt)
: m_field(BERDecodeGF2NP(bt))
{
BERSequenceDecoder seq(bt);
m_field->BERDecodeElement(seq, m_a);
m_field->BERDecodeElement(seq, m_b);
// skip optional seed
if (!seq.EndReached())
{
SecByteBlock seed;
unsigned int unused;
BERDecodeBitString(seq, seed, unused);
}
seq.MessageEnd();
}
void EC2N::DEREncode(BufferedTransformation &bt) const
{
m_field->DEREncode(bt);
DERSequenceEncoder seq(bt);
m_field->DEREncodeElement(seq, m_a);
m_field->DEREncodeElement(seq, m_b);
seq.MessageEnd();
}
bool EC2N::DecodePoint(EC2N::Point &P, const byte *encodedPoint, size_t encodedPointLen) const
{
StringStore store(encodedPoint, encodedPointLen);
return DecodePoint(P, store, encodedPointLen);
}
bool EC2N::DecodePoint(EC2N::Point &P, BufferedTransformation &bt, size_t encodedPointLen) const
{
byte type;
if (encodedPointLen < 1 || !bt.Get(type))
return false;
switch (type)
{
case 0:
P.identity = true;
return true;
case 2:
case 3:
{
if (encodedPointLen != EncodedPointSize(true))
return false;
P.identity = false;
P.x.Decode(bt, m_field->MaxElementByteLength());
if (P.x.IsZero())
{
P.y = m_field->SquareRoot(m_b);
return true;
}
FieldElement z = m_field->Square(P.x);
assert(P.x == m_field->SquareRoot(z));
P.y = m_field->Divide(m_field->Add(m_field->Multiply(z, m_field->Add(P.x, m_a)), m_b), z);
assert(P.x == m_field->Subtract(m_field->Divide(m_field->Subtract(m_field->Multiply(P.y, z), m_b), z), m_a));
z = m_field->SolveQuadraticEquation(P.y);
assert(m_field->Add(m_field->Square(z), z) == P.y);
z.SetCoefficient(0, type & 1);
P.y = m_field->Multiply(z, P.x);
return true;
}
case 4:
{
if (encodedPointLen != EncodedPointSize(false))
return false;
unsigned int len = m_field->MaxElementByteLength();
P.identity = false;
P.x.Decode(bt, len);
P.y.Decode(bt, len);
return true;
}
default:
return false;
}
}
void EC2N::EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const
{
if (P.identity)
NullStore().TransferTo(bt, EncodedPointSize(compressed));
else if (compressed)
{
bt.Put(2 + (!P.x ? 0 : m_field->Divide(P.y, P.x).GetBit(0)));
P.x.Encode(bt, m_field->MaxElementByteLength());
}
else
{
unsigned int len = m_field->MaxElementByteLength();
bt.Put(4); // uncompressed
P.x.Encode(bt, len);
P.y.Encode(bt, len);
}
}
void EC2N::EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const
{
ArraySink sink(encodedPoint, EncodedPointSize(compressed));
EncodePoint(sink, P, compressed);
assert(sink.TotalPutLength() == EncodedPointSize(compressed));
}
EC2N::Point EC2N::BERDecodePoint(BufferedTransformation &bt) const
{
SecByteBlock str;
BERDecodeOctetString(bt, str);
Point P;
if (!DecodePoint(P, str, str.size()))
BERDecodeError();
return P;
}
void EC2N::DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const
{
SecByteBlock str(EncodedPointSize(compressed));
EncodePoint(str, P, compressed);
DEREncodeOctetString(bt, str);
}
bool EC2N::ValidateParameters(RandomNumberGenerator &rng, unsigned int level) const
{
bool pass = !!m_b;
pass = pass && m_a.CoefficientCount() <= m_field->MaxElementBitLength();
pass = pass && m_b.CoefficientCount() <= m_field->MaxElementBitLength();
if (level >= 1)
pass = pass && m_field->GetModulus().IsIrreducible();
return pass;
}
bool EC2N::VerifyPoint(const Point &P) const
{
const FieldElement &x = P.x, &y = P.y;
return P.identity ||
(x.CoefficientCount() <= m_field->MaxElementBitLength()
&& y.CoefficientCount() <= m_field->MaxElementBitLength()
&& !(((x+m_a)*x*x+m_b-(x+y)*y)%m_field->GetModulus()));
}
bool EC2N::Equal(const Point &P, const Point &Q) const
{
if (P.identity && Q.identity)
return true;
if (P.identity && !Q.identity)
return false;
if (!P.identity && Q.identity)
return false;
return (m_field->Equal(P.x,Q.x) && m_field->Equal(P.y,Q.y));
}
const EC2N::Point& EC2N::Identity() const
{
return Singleton<Point>().Ref();
}
const EC2N::Point& EC2N::Inverse(const Point &P) const
{
if (P.identity)
return P;
else
{
m_R.identity = false;
m_R.y = m_field->Add(P.x, P.y);
m_R.x = P.x;
return m_R;
}
}
const EC2N::Point& EC2N::Add(const Point &P, const Point &Q) const
{
if (P.identity) return Q;
if (Q.identity) return P;
if (Equal(P, Q)) return Double(P);
if (m_field->Equal(P.x, Q.x) && m_field->Equal(P.y, m_field->Add(Q.x, Q.y))) return Identity();
FieldElement t = m_field->Add(P.y, Q.y);
t = m_field->Divide(t, m_field->Add(P.x, Q.x));
FieldElement x = m_field->Square(t);
m_field->Accumulate(x, t);
m_field->Accumulate(x, Q.x);
m_field->Accumulate(x, m_a);
m_R.y = m_field->Add(P.y, m_field->Multiply(t, x));
m_field->Accumulate(x, P.x);
m_field->Accumulate(m_R.y, x);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
}
const EC2N::Point& EC2N::Double(const Point &P) const
{
if (P.identity) return P;
if (!m_field->IsUnit(P.x)) return Identity();
FieldElement t = m_field->Divide(P.y, P.x);
m_field->Accumulate(t, P.x);
m_R.y = m_field->Square(P.x);
m_R.x = m_field->Square(t);
m_field->Accumulate(m_R.x, t);
m_field->Accumulate(m_R.x, m_a);
m_field->Accumulate(m_R.y, m_field->Multiply(t, m_R.x));
m_field->Accumulate(m_R.y, m_R.x);
m_R.identity = false;
return m_R;
}
// ********************************************************
/*
EcPrecomputation<EC2N>& EcPrecomputation<EC2N>::operator=(const EcPrecomputation<EC2N> &rhs)
{
m_ec = rhs.m_ec;
m_ep = rhs.m_ep;
m_ep.m_group = m_ec.get();
return *this;
}
void EcPrecomputation<EC2N>::SetCurveAndBase(const EC2N &ec, const EC2N::Point &base)
{
m_ec.reset(new EC2N(ec));
m_ep.SetGroupAndBase(*m_ec, base);
}
void EcPrecomputation<EC2N>::Precompute(unsigned int maxExpBits, unsigned int storage)
{
m_ep.Precompute(maxExpBits, storage);
}
void EcPrecomputation<EC2N>::Load(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
word32 version;
BERDecodeUnsigned<word32>(seq, version, INTEGER, 1, 1);
m_ep.m_exponentBase.BERDecode(seq);
m_ep.m_windowSize = m_ep.m_exponentBase.BitCount() - 1;
m_ep.m_bases.clear();
while (!seq.EndReached())
m_ep.m_bases.push_back(m_ec->BERDecodePoint(seq));
seq.MessageEnd();
}
void EcPrecomputation<EC2N>::Save(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
DEREncodeUnsigned<word32>(seq, 1); // version
m_ep.m_exponentBase.DEREncode(seq);
for (unsigned i=0; i<m_ep.m_bases.size(); i++)
m_ec->DEREncodePoint(seq, m_ep.m_bases[i]);
seq.MessageEnd();
}
EC2N::Point EcPrecomputation<EC2N>::Exponentiate(const Integer &exponent) const
{
return m_ep.Exponentiate(exponent);
}
EC2N::Point EcPrecomputation<EC2N>::CascadeExponentiate(const Integer &exponent, const DL_FixedBasePrecomputation<Element> &pc2, const Integer &exponent2) const
{
return m_ep.CascadeExponentiate(exponent, static_cast<const EcPrecomputation<EC2N> &>(pc2).m_ep, exponent2);
}
*/
NAMESPACE_END
#endif